O desfoque gaussiano é um método usado para desfocar as imagens sem problemas. Envolve a criação de uma matriz que será usada pela convolução com os pixels de uma imagem. Nesse desafio, sua tarefa é construir essa matriz usada no desfoque gaussiano. Irá levar uma entrada r que será o raio do borrão e uma entrada σ que será o desvio padrão, a fim de construir uma matriz com dimensões (2 r + 1 × 2 r + 1). Cada valor nessa matriz terá um valor ( x , y ) que depende de sua distância absoluta em cada direção do centro e será usado para calcular G ( x , y ) onde a fórmulaG é
Por exemplo, se r = 2, queremos gerar uma matriz 5 x 5. Primeiro, a matriz de valores ( x , y ) é
(2, 2) (1, 2) (0, 2) (1, 2) (2, 2)
(2, 1) (1, 1) (0, 1) (1, 1) (2, 1)
(2, 0) (1, 0) (0, 0) (1, 0) (2, 0)
(2, 1) (1, 1) (0, 1) (1, 1) (2, 1)
(2, 2) (1, 2) (0, 2) (1, 2) (2, 2)
Então, deixe σ = 1,5 e aplique G a cada ( x , y )
0.0119552 0.0232856 0.0290802 0.0232856 0.0119552
0.0232856 0.0453542 0.0566406 0.0453542 0.0232856
0.0290802 0.0566406 0.0707355 0.0566406 0.0290802
0.0232856 0.0453542 0.0566406 0.0453542 0.0232856
0.0119552 0.0232856 0.0290802 0.0232856 0.0119552
Normalmente no desfoque de imagem, essa matriz seria normalizada pegando a soma de todos os valores nessa matriz e dividindo por ela. Para esse desafio, isso não é necessário e os valores brutos calculados pela fórmula são os que devem ser os resultados.
Regras
- Isso é código-golfe, então o código mais curto vence.
- A entrada r será um número inteiro não negativo e σ será um número real positivo.
- A saída deve representar uma matriz. Ele pode ser formatado como uma matriz 2D, uma string representando uma matriz 2D ou algo semelhante.
- Imprecisões de ponto flutuante não serão contadas contra você.
Casos de teste
(r, σ) = (0, 0.25)
2.54648
(1, 7)
0.00318244 0.00321509 0.00318244
0.00321509 0.00324806 0.00321509
0.00318244 0.00321509 0.00318244
(3, 2.5)
0.00603332 0.00900065 0.0114421 0.012395 0.0114421 0.00900065 0.00603332
0.00900065 0.0134274 0.0170696 0.0184912 0.0170696 0.0134274 0.00900065
0.0114421 0.0170696 0.0216997 0.023507 0.0216997 0.0170696 0.0114421
0.012395 0.0184912 0.023507 0.0254648 0.023507 0.0184912 0.012395
0.0114421 0.0170696 0.0216997 0.023507 0.0216997 0.0170696 0.0114421
0.00900065 0.0134274 0.0170696 0.0184912 0.0170696 0.0134274 0.00900065
0.00603332 0.00900065 0.0114421 0.012395 0.0114421 0.00900065 0.00603332
(4, 3.33)
0.00339074 0.00464913 0.00582484 0.00666854 0.00697611 0.00666854 0.00582484 0.00464913 0.00339074
0.00464913 0.00637454 0.00798657 0.0091434 0.00956511 0.0091434 0.00798657 0.00637454 0.00464913
0.00582484 0.00798657 0.0100063 0.0114556 0.011984 0.0114556 0.0100063 0.00798657 0.00582484
0.00666854 0.0091434 0.0114556 0.013115 0.0137198 0.013115 0.0114556 0.0091434 0.00666854
0.00697611 0.00956511 0.011984 0.0137198 0.0143526 0.0137198 0.011984 0.00956511 0.00697611
0.00666854 0.0091434 0.0114556 0.013115 0.0137198 0.013115 0.0114556 0.0091434 0.00666854
0.00582484 0.00798657 0.0100063 0.0114556 0.011984 0.0114556 0.0100063 0.00798657 0.00582484
0.00464913 0.00637454 0.00798657 0.0091434 0.00956511 0.0091434 0.00798657 0.00637454 0.00464913
0.00339074 0.00464913 0.00582484 0.00666854 0.00697611 0.00666854 0.00582484 0.00464913 0.00339074