Gerador Prime Home mais rápido


23

O que é uma casa prime?

Por exemplo, considere HP (4). Primeiro, encontre os fatores principais. Os fatores primos de 4 ( em ordem numérica do menor para o maior, sempre ) são 2, 2. Considere esses fatores como um número literal. 2, 2 se torna 22. Esse processo de fatoração continua até você atingir um número primo.

number    prime factors
4         2, 2
22        2, 11
211       211 is prime

Quando você alcança um número primo, a sequência termina. HP (4) = 211. Aqui está um exemplo mais longo, com 14:

number    prime factors
14        2, 7
27        3, 3, 3
333       3, 3, 37
3337      47, 71
4771      13, 367
13367     13367 is prime

Seu desafio é criar um programa que calcule HP (x) dado x, e faça-o o mais rápido possível . Você pode usar quaisquer recursos que desejar, exceto uma lista de primos iniciais conhecidos.

Tome nota, esses números se tornam muito grandes muito rapidamente. Em x = 8, o HP (x) salta até 3331113965338635107. O HP (49) ainda não foi encontrado.

A velocidade do programa será testada em um Raspberry Pi 2, com a média das seguintes entradas:

16
20
64
65
80

Se você possui um Raspberry Pi 2, programe o programa por conta própria e calcule a média dos tempos.


3
Defina o mais rápido possível .
precisa saber é o seguinte

1
@ LegionMammal978 Com o melhor desempenho em tempo de execução. É um desafio de código mais rápido.
Noah L


1
Como sabemos qual código é mais rápido? Algumas pessoas podem estar testando em um laptop de cinco anos ( tosse como eu tossem ), enquanto outras podem estar usando algum desktop / servidor de última geração. Além disso, o desempenho varia entre intérpretes do mesmo idioma.
JungHwan Min 25/01/2017

1
É permitido o uso de um teste probabilístico de primalidade, como Miller-Rabin?
miles

Respostas:


6

Mathematica, HP (80) em ~ 0.88s

NestWhile[
  FromDigits[
    Flatten[IntegerDigits /@ 
      ConstantArray @@@ FactorInteger[#]]] &, #, CompositeQ] &

Função anônima. Pega um número como entrada e retorna um número como saída.


A 1no final não deveria estar lá ...
JungHwan Min

Eu não tenho Mathematica no meu computador, o que significa que eu vou ter que testar isso (eo resto dos programas) no meu Raspberry Pi 2.
Noah L

Desde que não estamos golfe: não há CompositeQpara !PrimeQ(o que também garante que a sua resposta não loop para sempre na entrada 1).
Martin Ender

Como é possível que o Mathematica funcione HP(80)em tão pouco tempo sem ter os primos codificados em algum lugar? Meu laptop i7 está demorando horas para executar uma verificação de primalidade, além de encontrar os principais fatores, para HP(80)quando chegar 47109211289720051.
Mario Mario

O @NoahL Mathematica pode ser testado online. Meta.codegolf.stackexchange.com/a/1445/34718
mbomb007

5

PyPy 5.4.1 64 bits (linux), HP (80) ~ 1.54s

A versão de 32 bits terá um tempo um pouco mais lento.

Eu uso quatro métodos diferentes de fatoração, com pontos de interrupção empiricamente determinados:

Tentei por um tempo encontrar uma pausa limpa entre ECF e MPQS, mas parece não haver uma. No entanto, se n contiver um fator pequeno, o ECF geralmente o encontrará quase imediatamente, então optei por testar apenas algumas curvas, antes de passar para o MPQS.

Atualmente, é apenas duas vezes mais lento que o Mathmatica, o que certamente considero um sucesso.


home-prime.py

import math
import my_math
import mpqs

max_trial = 1e10
max_pollard = 1e22

def factor(n):
  if n < max_trial:
    return factor_trial(n)
  for p in my_math.small_primes:
    if n%p == 0:
      return [p] + factor(n/p)
  if my_math.is_prime(n):
    return [n]
  if n < max_pollard:
    p = pollard_rho(n)
  else:
    p = lenstra_ecf(n) or mpqs.mpqs(n)
  return factor(p) + factor(n/p)


def factor_trial(n):
  a = []
  for p in my_math.small_primes:
    while n%p == 0:
      a += [p]
      n /= p
  i = 211
  while i*i < n:
    for o in my_math.offsets:
      i += o
      while n%i == 0:
        a += [i]
        n /= i
  if n > 1:
    a += [n]
  return a


def pollard_rho(n):
  # Brent's variant
  y, r, q = 0, 1, 1
  c, m = 9, 40
  g = 1
  while g == 1:
    x = y
    for i in range(r):
      y = (y*y + c) % n
    k = 0
    while k < r and g == 1:
      ys = y
      for j in range(min(m, r-k)):
        y = (y*y + c) % n
        q = q*abs(x-y) % n
      g = my_math.gcd(q, n)
      k += m
    r *= 2
  if g == n:
    ys = (ys*ys + c) % n
    g = gcd(n, abs(x-ys))
    while g == 1:
      ys = (ys*ys + c) % n
      g = gcd(n, abs(x-ys))
  return g

def ec_add((x1, z1), (x2, z2), (x0, z0), n):
  t1, t2 = (x1-z1)*(x2+z2), (x1+z1)*(x2-z2)
  x, z = t1+t2, t1-t2
  return (z0*x*x % n, x0*z*z % n)

def ec_double((x, z), (a, b), n):
  t1 = x+z; t1 *= t1
  t2 = x-z; t2 *= t2
  t3 = t1 - t2
  t4 = 4*b*t2
  return (t1*t4 % n, t3*(t4 + a*t3) % n)

def ec_multiply(k, p, C, n):
  # Montgomery ladder algorithm
  p0 = p
  q, p = p, ec_double(p, C, n)
  b = k >> 1
  while b > (b & -b):
    b ^= b & -b
  while b:
    if k&b:
      q, p = ec_add(p, q, p0, n), ec_double(p, C, n)
    else:
      q, p = ec_double(q, C, n), ec_add(p, q, p0, n),
    b >>= 1
  return q

def lenstra_ecf(n, m = 5):
  # Montgomery curves w/ Suyama parameterization.
  # Based on pseudocode found in:
  # "Implementing the Elliptic Curve Method of Factoring in Reconfigurable Hardware"
  # Gaj, Kris et. al
  # http://www.hyperelliptic.org/tanja/SHARCS/talks06/Gaj.pdf
  # Phase 2 is not implemented.
  B1, B2 = 8, 13
  for i in range(m):
    pg = my_math.primes()
    p = pg.next()
    k = 1
    while p < B1:
      k *= p**int(math.log(B1, p))
      p = pg.next()
    for s in range(B1, B2):
      u, v = s*s-5, 4*s
      x = u*u*u
      z = v*v*v
      t = pow(v-u, 3, n)
      P = (x, z)
      C = (t*(3*u+v) % n, 4*x*v % n)
      Q = ec_multiply(k, P, C, n)
      g = my_math.gcd(Q[1], n)
      if 1 < g < n: return g
    B1, B2 = B2, B1 + B2


if __name__ == '__main__':
  import time
  import sys
  for n in sys.argv[1:]:
    t0 = time.time()
    i = int(n)
    f = []
    while len(f) != 1:
      f = sorted(factor(i))
      #print i, f
      i = int(''.join(map(str, f)))
    t1 = time.time()-t0
    print n, i
    print '%.3fs'%(t1)
    print

Exemplo de tempos

    $ pypy home-prime.py 8 16 20 64 65 80
8 3331113965338635107
0.005s

16 31636373
0.001s

20 3318308475676071413
0.004s

64 1272505013723
0.000s

65 1381321118321175157763339900357651
0.397s

80 313169138727147145210044974146858220729781791489
1.537s

A média dos 5 é de cerca de 0,39s.


Dependências

mpqs.pyé extraído diretamente da minha resposta à fatoração semiprime mais rápida, com algumas modificações muito pequenas.

mpqs.py

import math
import my_math
import time

# Multiple Polynomial Quadratic Sieve
def mpqs(n, verbose=False):
  if verbose:
    time1 = time.time()

  root_n = my_math.isqrt(n)
  root_2n = my_math.isqrt(n+n)

  # formula chosen by experimentation
  # seems to be close to optimal for n < 10^50
  bound = int(5 * math.log(n, 10)**2)

  prime = []
  mod_root = []
  log_p = []
  num_prime = 0

  # find a number of small primes for which n is a quadratic residue
  p = 2
  while p < bound or num_prime < 3:

    # legendre (n|p) is only defined for odd p
    if p > 2:
      leg = my_math.legendre(n, p)
    else:
      leg = n & 1

    if leg == 1:
      prime += [p]
      mod_root += [int(my_math.mod_sqrt(n, p))]
      log_p += [math.log(p, 10)]
      num_prime += 1
    elif leg == 0:
      if verbose:
        print 'trial division found factors:'
        print p, 'x', n/p
      return p

    p = my_math.next_prime(p)

  # size of the sieve
  x_max = bound*8

  # maximum value on the sieved range
  m_val = (x_max * root_2n) >> 1

  # fudging the threshold down a bit makes it easier to find powers of primes as factors
  # as well as partial-partial relationships, but it also makes the smoothness check slower.
  # there's a happy medium somewhere, depending on how efficient the smoothness check is
  thresh = math.log(m_val, 10) * 0.735

  # skip small primes. they contribute very little to the log sum
  # and add a lot of unnecessary entries to the table
  # instead, fudge the threshold down a bit, assuming ~1/4 of them pass
  min_prime = int(thresh*3)
  fudge = sum(log_p[i] for i,p in enumerate(prime) if p < min_prime)/4
  thresh -= fudge

  sieve_primes = [p for p in prime if p >= min_prime]
  sp_idx = prime.index(sieve_primes[0])

  if verbose:
    print 'smoothness bound:', bound
    print 'sieve size:', x_max
    print 'log threshold:', thresh
    print 'skipping primes less than:', min_prime

  smooth = []
  used_prime = set()
  partial = {}
  num_smooth = 0
  prev_num_smooth = 0
  num_used_prime = 0
  num_partial = 0
  num_poly = 0
  root_A = my_math.isqrt(root_2n / x_max)

  if verbose:
    print 'sieving for smooths...'
  while True:
    # find an integer value A such that:
    # A is =~ sqrt(2*n) / x_max
    # A is a perfect square
    # sqrt(A) is prime, and n is a quadratic residue mod sqrt(A)
    while True:
      root_A = my_math.next_prime(root_A)
      leg = my_math.legendre(n, root_A)
      if leg == 1:
        break
      elif leg == 0:
        if verbose:
          print 'dumb luck found factors:'
          print root_A, 'x', n/root_A
        return root_A

    A = root_A * root_A

    # solve for an adequate B
    # B*B is a quadratic residue mod n, such that B*B-A*C = n
    # this is unsolvable if n is not a quadratic residue mod sqrt(A)
    b = my_math.mod_sqrt(n, root_A)
    B = (b + (n - b*b) * my_math.mod_inv(b + b, root_A))%A

    # B*B-A*C = n <=> C = (B*B-n)/A
    C = (B*B - n) / A

    num_poly += 1

    # sieve for prime factors
    sums = [0.0]*(2*x_max)
    i = sp_idx
    for p in sieve_primes:
      logp = log_p[i]

      inv_A = my_math.mod_inv(A, p)
      # modular root of the quadratic
      a = int(((mod_root[i] - B) * inv_A)%p)
      b = int(((p - mod_root[i] - B) * inv_A)%p)

      amx = a+x_max
      bmx = b+x_max

      ax = amx-p
      bx = bmx-p

      k = p
      while k < x_max:
        sums[k+ax] += logp
        sums[k+bx] += logp
        sums[amx-k] += logp
        sums[bmx-k] += logp
        k += p

      if k+ax < x_max:  
        sums[k+ax] += logp
      if k+bx < x_max:
        sums[k+bx] += logp
      if amx-k > 0:
        sums[amx-k] += logp
      if bmx-k > 0:
        sums[bmx-k] += logp
      i += 1

    # check for smooths
    x = -x_max
    for v in sums:
      if v > thresh:
        vec = set()
        sqr = []
        # because B*B-n = A*C
        # (A*x+B)^2 - n = A*A*x*x+2*A*B*x + B*B - n
        #               = A*(A*x*x+2*B*x+C)
        # gives the congruency
        # (A*x+B)^2 = A*(A*x*x+2*B*x+C) (mod n)
        # because A is chosen to be square, it doesn't need to be sieved
        sieve_val = (A*x + B+B)*x + C

        if sieve_val < 0:
          vec = {-1}
          sieve_val = -sieve_val

        for p in prime:
          while sieve_val%p == 0:
            if p in vec:
              # keep track of perfect square factors
              # to avoid taking the sqrt of a gigantic number at the end
              sqr += [p]
            vec ^= {p}
            sieve_val = int(sieve_val / p)

        if sieve_val == 1:
          # smooth
          smooth += [(vec, (sqr, (A*x+B), root_A))]
          used_prime |= vec
        elif sieve_val in partial:
          # combine two partials to make a (xor) smooth
          # that is, every prime factor with an odd power is in our factor base
          pair_vec, pair_vals = partial[sieve_val]
          sqr += list(vec & pair_vec) + [sieve_val]
          vec ^= pair_vec
          smooth += [(vec, (sqr + pair_vals[0], (A*x+B)*pair_vals[1], root_A*pair_vals[2]))]
          used_prime |= vec
          num_partial += 1
        else:
          # save partial for later pairing
          partial[sieve_val] = (vec, (sqr, A*x+B, root_A))
      x += 1

    prev_num_smooth = num_smooth
    num_smooth = len(smooth)
    num_used_prime = len(used_prime)

    if verbose:
      print 100 * num_smooth / num_prime, 'percent complete\r',

    if num_smooth > num_used_prime and num_smooth > prev_num_smooth:
      if verbose:
        print '%d polynomials sieved (%d values)'%(num_poly, num_poly*x_max*2)
        print 'found %d smooths (%d from partials) in %f seconds'%(num_smooth, num_partial, time.time()-time1)
        print 'solving for non-trivial congruencies...'

      used_prime_list = sorted(list(used_prime))

      # set up bit fields for gaussian elimination
      masks = []
      mask = 1
      bit_fields = [0]*num_used_prime
      for vec, vals in smooth:
        masks += [mask]
        i = 0
        for p in used_prime_list:
          if p in vec: bit_fields[i] |= mask
          i += 1
        mask <<= 1

      # row echelon form
      col_offset = 0
      null_cols = []
      for col in xrange(num_smooth):
        pivot = col-col_offset == num_used_prime or bit_fields[col-col_offset] & masks[col] == 0
        for row in xrange(col+1-col_offset, num_used_prime):
          if bit_fields[row] & masks[col]:
            if pivot:
              bit_fields[col-col_offset], bit_fields[row] = bit_fields[row], bit_fields[col-col_offset]
              pivot = False
            else:
              bit_fields[row] ^= bit_fields[col-col_offset]
        if pivot:
          null_cols += [col]
          col_offset += 1

      # reduced row echelon form
      for row in xrange(num_used_prime):
        # lowest set bit
        mask = bit_fields[row] & -bit_fields[row]
        for up_row in xrange(row):
          if bit_fields[up_row] & mask:
            bit_fields[up_row] ^= bit_fields[row]

      # check for non-trivial congruencies
      for col in null_cols:
        all_vec, (lh, rh, rA) = smooth[col]
        lhs = lh   # sieved values (left hand side)
        rhs = [rh] # sieved values - n (right hand side)
        rAs = [rA] # root_As (cofactor of lhs)
        i = 0
        for field in bit_fields:
          if field & masks[col]:
            vec, (lh, rh, rA) = smooth[i]
            lhs += list(all_vec & vec) + lh
            all_vec ^= vec
            rhs += [rh]
            rAs += [rA]
          i += 1

        factor = my_math.gcd(my_math.list_prod(rAs)*my_math.list_prod(lhs) - my_math.list_prod(rhs), n)
        if 1 < factor < n:
          break
      else:
        if verbose:
          print 'none found.'
        continue
      break

  if verbose:
    print 'factors found:'
    print factor, 'x', n/factor
    print 'time elapsed: %f seconds'%(time.time()-time1)
  return factor

if __name__ == "__main__":
  import argparse
  parser = argparse.ArgumentParser(description='Uses a MPQS to factor a composite number')
  parser.add_argument('composite', metavar='number_to_factor', type=long, help='the composite number to factor')
  parser.add_argument('--verbose', dest='verbose', action='store_true', help="enable verbose output")
  args = parser.parse_args()

  if args.verbose:
    mpqs(args.composite, args.verbose)
  else:
    time1 = time.time()
    print mpqs(args.composite)
    print 'time elapsed: %f seconds'%(time.time()-time1)

my_math.pyé retirado do mesmo post que mpqs.py, no entanto, também adicionei o gerador de número primo ilimitado que usei na minha resposta para encontrar a maior lacuna entre os primos bons .

my_math.py

# primes less than 212
small_primes = [
    2,  3,  5,  7, 11, 13, 17, 19, 23, 29, 31, 37,
   41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89,
   97,101,103,107,109,113,127,131,137,139,149,151,
  157,163,167,173,179,181,191,193,197,199,211]

# pre-calced sieve of eratosthenes for n = 2, 3, 5, 7
indices = [
    1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,
   53, 59, 61, 67, 71, 73, 79, 83, 89, 97,101,103,
  107,109,113,121,127,131,137,139,143,149,151,157,
  163,167,169,173,179,181,187,191,193,197,199,209]

# distances between sieve values
offsets = [
  10, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6,
   6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4,
   2, 4, 8, 6, 4, 6, 2, 4, 6, 2, 6, 6,
   4, 2, 4, 6, 2, 6, 4, 2, 4, 2,10, 2]

# tabulated, mod 105
dindices =[
  0,10, 2, 0, 4, 0, 0, 0, 8, 0, 0, 2, 0, 4, 0,
  0, 6, 2, 0, 4, 0, 0, 4, 6, 0, 0, 6, 0, 0, 2,
  0, 6, 2, 0, 4, 0, 0, 4, 6, 0, 0, 2, 0, 4, 2,
  0, 6, 6, 0, 0, 0, 0, 6, 6, 0, 0, 0, 0, 4, 2,
  0, 6, 2, 0, 4, 0, 0, 4, 6, 0, 0, 2, 0, 6, 2,
  0, 6, 0, 0, 4, 0, 0, 4, 6, 0, 0, 2, 0, 4, 8,
  0, 0, 2, 0,10, 0, 0, 4, 0, 0, 0, 2, 0, 4, 2]

max_int = 2147483647


# returns the index of x in a sorted list a
# or the index of the next larger item if x is not present
# i.e. the proper insertion point for x in a
def binary_search(a, x):
  s = 0
  e = len(a)
  m = e >> 1
  while m != e:
    if a[m] < x:
      s = m
      m = (s + e + 1) >> 1
    else:
      e = m
      m = (s + e) >> 1
  return m


# divide and conquer list product
def list_prod(a):
  size = len(a)
  if size == 1:
    return a[0]
  return list_prod(a[:size>>1]) * list_prod(a[size>>1:])


# greatest common divisor of a and b
def gcd(a, b):
  while b:
    a, b = b, a%b
  return a


# extended gcd
def ext_gcd(a, m):
  a = int(a%m)
  x, u = 0, 1
  while a:
    x, u = u, x - (m/a)*u
    m, a = a, m%a
  return (m, x, u)


# legendre symbol (a|m)
# note: returns m-1 if a is a non-residue, instead of -1
def legendre(a, m):
  return pow(a, (m-1) >> 1, m)


# modular inverse of a mod m
def mod_inv(a, m):
  return ext_gcd(a, m)[1]


# modular sqrt(n) mod p
# p must be prime
def mod_sqrt(n, p):
  a = n%p
  if p%4 == 3:
    return pow(a, (p+1) >> 2, p)
  elif p%8 == 5:
    v = pow(a << 1, (p-5) >> 3, p)
    i = ((a*v*v << 1) % p) - 1
    return (a*v*i)%p
  elif p%8 == 1:
    # Shank's method
    q = p-1
    e = 0
    while q&1 == 0:
      e += 1
      q >>= 1

    n = 2
    while legendre(n, p) != p-1:
      n += 1

    w = pow(a, q, p)
    x = pow(a, (q+1) >> 1, p)
    y = pow(n, q, p)
    r = e
    while True:
      if w == 1:
        return x

      v = w
      k = 0
      while v != 1 and k+1 < r:
        v = (v*v)%p
        k += 1

      if k == 0:
        return x

      d = pow(y, 1 << (r-k-1), p)
      x = (x*d)%p
      y = (d*d)%p
      w = (w*y)%p
      r = k
  else: # p == 2
    return a


#integer sqrt of n
def isqrt(n):
  c = n*4/3
  d = c.bit_length()

  a = d>>1
  if d&1:
    x = 1 << a
    y = (x + (n >> a)) >> 1
  else:
    x = (3 << a) >> 2
    y = (x + (c >> a)) >> 1

  if x != y:
    x = y
    y = (x + n/x) >> 1
    while y < x:
      x = y
      y = (x + n/x) >> 1
  return x


# integer cbrt of n
def icbrt(n):
  d = n.bit_length()

  if d%3 == 2:
    x = 3 << d/3-1
  else:
    x = 1 << d/3

  y = (2*x + n/(x*x))/3
  if x != y:
    x = y
    y = (2*x + n/(x*x))/3
    while y < x:
      x = y
      y = (2*x + n/(x*x))/3
  return x


# strong probable prime
def is_sprp(n, b=2):
  if n < 2: return False
  d = n-1
  s = 0
  while d&1 == 0:
    s += 1
    d >>= 1

  x = pow(b, d, n)
  if x == 1 or x == n-1:
    return True

  for r in xrange(1, s):
    x = (x * x)%n
    if x == 1:
      return False
    elif x == n-1:
      return True

  return False


# lucas probable prime
# assumes D = 1 (mod 4), (D|n) = -1
def is_lucas_prp(n, D):
  P = 1
  Q = (1-D) >> 2

  # n+1 = 2**r*s where s is odd
  s = n+1
  r = 0
  while s&1 == 0:
    r += 1
    s >>= 1

  # calculate the bit reversal of (odd) s
  # e.g. 19 (10011) <=> 25 (11001)
  t = 0
  while s:
    if s&1:
      t += 1
      s -= 1
    else:
      t <<= 1
      s >>= 1

  # use the same bit reversal process to calculate the sth Lucas number
  # keep track of q = Q**n as we go
  U = 0
  V = 2
  q = 1
  # mod_inv(2, n)
  inv_2 = (n+1) >> 1
  while t:
    if t&1:
      # U, V of n+1
      U, V = ((U + V) * inv_2)%n, ((D*U + V) * inv_2)%n
      q = (q * Q)%n
      t -= 1
    else:
      # U, V of n*2
      U, V = (U * V)%n, (V * V - 2 * q)%n
      q = (q * q)%n
      t >>= 1

  # double s until we have the 2**r*sth Lucas number
  while r:
    U, V = (U * V)%n, (V * V - 2 * q)%n
    q = (q * q)%n
    r -= 1

  # primality check
  # if n is prime, n divides the n+1st Lucas number, given the assumptions
  return U == 0


## Baillie-PSW ##
# this is technically a probabalistic test, but there are no known pseudoprimes
def is_bpsw(n):
  if not is_sprp(n, 2): return False

  # idea shamelessly stolen from Mathmatica's PrimeQ
  # if n is a 2-sprp and a 3-sprp, n is necessarily square-free
  if not is_sprp(n, 3): return False

  a = 5
  s = 2
  # if n is a perfect square, this will never terminate
  while legendre(a, n) != n-1:
    s = -s
    a = s-a
  return is_lucas_prp(n, a)


# an 'almost certain' primality check
def is_prime(n):
  if n < 212:
    m = binary_search(small_primes, n)
    return n == small_primes[m]

  for p in small_primes:
    if n%p == 0:
      return False

  # if n is a 32-bit integer, perform full trial division
  if n <= max_int:
    p = 211
    while p*p < n:
      for o in offsets:
        p += o
        if n%p == 0:
          return False
    return True

  return is_bpsw(n)


# next prime strictly larger than n
def next_prime(n):
  if n < 2:
    return 2

  # first odd larger than n
  n = (n + 1) | 1
  if n < 212:
    m = binary_search(small_primes, n)
    return small_primes[m]

  # find our position in the sieve rotation via binary search
  x = int(n%210)
  m = binary_search(indices, x)
  i = int(n + (indices[m] - x))

  # adjust offsets
  offs = offsets[m:] + offsets[:m]
  while True:
    for o in offs:
      if is_prime(i):
        return i
      i += o


# an infinite prime number generator
def primes(start = 0):
  for n in small_primes[start:]: yield n
  pg = primes(6)
  p = pg.next()
  q = p*p
  sieve = {221: 13, 253: 11}
  n = 211
  while True:
    for o in offsets:
      n += o
      stp = sieve.pop(n, 0)
      if stp:
        nxt = n/stp
        nxt += dindices[nxt%105]
        while nxt*stp in sieve:
          nxt += dindices[nxt%105]
        sieve[nxt*stp] = stp
      elif n < q:
        yield n
      else:
        sieve[q + dindices[p%105]*p] = p
        p = pg.next()
        q = p*p


# true if n is a prime power > 0
def is_prime_power(n):
  if n > 1:
    for p in small_primes:
      if n%p == 0:
        n /= p
        while n%p == 0: n /= p
        return n == 1

    r = isqrt(n)
    if r*r == n:
      return is_prime_power(r)

    s = icbrt(n)
    if s*s*s == n:
      return is_prime_power(s)

    p = 211
    while p*p < r:
      for o in offsets:
        p += o
        if n%p == 0:
          n /= p
          while n%p == 0: n /= p
          return n == 1

    if n <= max_int:
      while p*p < n:
        for o in offsets:
          p += o
          if n%p == 0:
            return False
      return True

    return is_bpsw(n)
  return False

2

Python 2 + primefac 1.1

Não tenho um Raspberry Pi para testá-lo.

from primefac import primefac

def HP(n):
    factors = list(primefac(n))

    #print n, factors

    if len(factors) == 1 and n in factors:
        return n

    n = ""
    for f in sorted(factors):
        n += str(f)
    return HP(int(n))

Experimente online

A primefacfunção retorna uma lista de todos os fatores primos de n. Em sua definição, ele chama isprime(n), que usa uma combinação de divisão de teste, método de Euler e teste de primalidade de Miller-Rabin. Eu recomendo baixar o pacote e visualizar a fonte.

Tentei usar em n = n * 10 ** int(floor(log10(f))+1) + fvez da concatenação de cadeias, mas é muito mais lento.


pip install primefacfuncionou para mim, embora 65 e 80 não pareçam rodar no Windows, devido a forking em segundo plano.
Primo

Olhar a fonte de primefacfoi muito engraçado, pois há muitos comentários com TODOoufind out why this is throwing errors
mbomb007

Eu também fiz. O autor realmente usa meus mpqs! ... ligeiramente modificado. Linha 551 # This occasionally throws IndexErrors.Sim, porque ele removeu a verificação de que existem mais fatores suaves do que primos usados.
Primo

Você deveria ajudá-lo. :)
mbomb007

Provavelmente entrarei em contato com ele quando terminar esse desafio, pretendo otimizar um pouco os mpqs (tenho que vencer o mathmatica, estou certo?).
Primo

2

C #

using System;
using System.Linq;

public class Program
{
    public static void Main(string[] args) {

        Console.Write("Enter Number: ");

        Int64 n = Convert.ToInt64(Console.ReadLine());

        Console.WriteLine("Start Time: " + DateTime.Now.ToString("HH:mm:ss.ffffff"));
        Console.WriteLine("Number, Factors");

        HomePrime(n);

        Console.WriteLine("End Time: " + DateTime.Now.ToString("HH:mm:ss.ffffff"));
        Console.ReadLine();
    }

    public static void HomePrime(Int64 num) {
        string s = FindFactors(num);
        if (CheckPrime(num,s) == true) {
            Console.WriteLine("{0} is prime", num);
        } else {
            Console.WriteLine("{0}, {1}", num, s);
            HomePrime(Convert.ToInt64(RemSp(s)));
        }
    }

    public static string FindFactors(Int64 num) {
        Int64 n, r, t = num;
        string f = "";
        for (n = num; n >= 2; n--) {
            r = CalcP(n, t);
            if (r != 0) {
                f = f + " " + r.ToString();
                t = n / r;
                n = n / r + 1;
            }
        }
        return f;
    }

    public static Int64 CalcP(Int64 num, Int64 tot) {
        for (Int64 i = 2; i <= tot; i++) {
            if (num % i == 0) {
                return i;
            } 
        }
        return 0;
    }

    public static string RemSp(string str) {
        return new string(str.ToCharArray().Where(c => !Char.IsWhiteSpace(c)).ToArray());
    }

    public static bool CheckPrime(Int64 num, string s) {
        if (s == "") {
            return false;
        } else if (num == Convert.ToInt64(RemSp(s))) {
            return true;
        }
        return false;
    }

}

Esta é uma versão mais otimizada do código anterior, com algumas partes redundantes desnecessárias removidas.

Saída (no meu laptop i7):

Enter Number: 16
Start Time: 18:09:51.636445
Number, Factors
16,  2 2 2 2
2222,  2 11 101
211101,  3 11 6397
3116397,  3 163 6373
31636373 is prime
End Time: 18:09:51.637954

Teste on-line


Fazer uma matriz com números primos / valores pré-determinados não é permitido, acredito, já que é uma brecha padrão.
P. Ktinos

@ P.Ktinos Eu também acho ... de qualquer maneira, seria muito grande para incluir.
Mario

1

Perl + teoria, HP (80) em 0.35s no PC

Não há Raspberry Pi disponível.

use ntheory ":all";
use feature "say";
sub hp {
  my $n = shift;
  while (!is_prime($n)) {
    $n = join "",factor($n);
  }
  $n;
}
say hp($_) for (16,20,64,65,80);

O teste de primalidade é o ES BPSW, mais uma única RM de base aleatória para números maiores. Nesse tamanho, poderíamos usar is_provable_prime(n-1 e / ou ECPP) sem diferença perceptível na velocidade, mas isso mudaria para valores de mais de 300 dígitos sem nenhum benefício real. O fatoramento inclui avaliação, potência, Rho-Brent, P-1, SQUFOF, ECM, QS, dependendo do tamanho.

Para essas entradas, ele roda aproximadamente a mesma velocidade que o código Pari / GP de Charles no site da OEIS. ntheory tem fatoração mais rápida para números pequenos, e meu P-1 e ECM são muito bons, mas o QS não é ótimo, então eu esperaria que Pari fosse mais rápido em algum momento.


1
Eu descobri que qualquer fator encontrado pelo P-1 também foi encontrado - mais cedo - pelo ECM, então eu o soltei (o mesmo vale para o Williams P + 1). Talvez eu tente adicionar o SQUFOF. Biblioteca brilhante, btw.
Primo 28/01

1
Além disso use feature "say";,.
primo
Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.