Emular uma CPU MOS 6502


29

Isso é meio que inspirado no desafio Intel 8086 que também está aqui, mas achei que um desafio 6502 seria interessante também.

O desafio

Eu pensei que seria divertido ver os resultados. Este é obviamente para o lado mais avançado do espectro. O desafio é escrever seu próprio emulador de CPU 6502. Isso envolve, é claro, a compreensão do conjunto de instruções e do formato de codificação. Os recursos estão vinculados na parte inferior. O 6502 é um dos processadores mais fáceis de imitar no mundo real. Para os objetivos deste desafio, você não precisará se preocupar com o tempo do ciclo, se não quiser - mas é sempre uma vantagem a ser incluída!

NÃO COPIAR O CÓDIGO DE NINGUÉM MAIS !! Claro, você certamente pode espiar outros emuladores para ajudá-lo a entender, mas sem copiar e colar! :)

Uma vez que seu código funcione, você sempre poderá percorrer uma milha extra, se quiser, e transformá-lo em um emulador de Apple II, ou NES, C64, VIC-20 ou qualquer outro bilhão de sistemas antigos baseados em 6502 da época.

Testando seu emulador

Eu compilei um conjunto de teste 6502 ao qual encontrei o código fonte aqui: http://code.google.com/p/hmc-6502/source/browse/trunk/emu/testvectors/AllSuiteA.asm

Minha versão compilada pode ser baixada aqui: http://rubbermallet.org/AllSuiteA.zip

Carregue o binário de 48 KB no espaço de memória do emulador por US $ 4000, o que deixa 16 KB de RAM de leitura e gravação abaixo dele. Quando o teste terminar de executar, o valor no endereço $ 0210 deve ser $ FF, se sua CPU for aprovada. Você saberá que o teste está concluído quando o contador do programa (PC) atingir o endereço $ 45C0.

Outros testes também estão disponíveis aqui: http://visual6502.org/wiki/index.php?title=6502TestPrograms

Fazendo algo mais interativo com ele

Uma vez que sua CPU funcione, você provavelmente desejará fazer algo mais divertido do que olhar para a saída de teste! Compilei uma imagem de ROM do Enhanced BASIC para o 6502. Tem 16 KB, portanto, você deve carregá-lo em $ C000 do seu espaço de memória emulado, redefinir o 6502 virtual e iniciar a execução.

Faça o download deste ZIP, que contém ehbasic.bin: http://rubbermallet.org/ehbasic.zip

A maneira como o EhBASIC lida com entrada / saída é muito simples. Quando deseja gravar um caractere no console, ele grava o byte na localização de memória $ F001. Portanto, quando o emulador vê o 6502 tentar gravar nesse local, simplesmente imprima esse valor de caractere no console com um printf ("% c", valor); ou como você quiser. (Este desafio não se limita a C, é claro)

Quando ele pesquisa um personagem que está sendo inserido no console, é bem parecido. Ele continua lendo a partir do local da memória $ F004, onde você deve ter o próximo valor de caractere ASCII do teclado aguardando para ser lido. Se não houver mais entrada para ler, ele deve retornar um valor zero.

O EhBASIC pesquisa o valor nesse local até que seja diferente de zero, o que permite saber que o byte é uma entrada válida do teclado. É por isso que, se não houver mais entrada para ler, o emulador retornará zero lá. O EhBASIC girará nele até a próxima chave válida quando estiver procurando por entrada.

Se você não limpar esse valor para zero depois de ler o último valor da chave, ele fará com que ele se repita como se você estivesse pressionando a tecla; portanto, tenha cuidado para fazer isso corretamente!

Se o seu emulador funcionar corretamente, é isso que você verá impresso no seu console quando executar a imagem da ROM:

6502 EhBASIC [C]old/[W]arm ?

Pressione C, depois pressione enter e você verá:

Memory size ?

31999 Bytes free

Enhanced BASIC 2.22

Ready

Os bytes livres podem ser diferentes para você, mas no meu emulador limitei a área de memória gravável a um limite de 32 KB. Você pode realmente ir até onde a ROM começa, que é a marca de 48 KB.

6502 Links de recursos da CPU

Aqui estão alguns recursos que devem fornecer informações suficientes para você trabalhar:

http://www.obelisk.demon.co.uk/6502/instructions.html

http://www.e-tradition.net/bytes/6502/6502_instruction_set.html

http://www.llx.com/~nparker/a2/opcodes.html <- este tem algumas informações muito interessantes

http://en.wikipedia.org/wiki/MOS_Technology_6502

Se você tiver dúvidas ou precisar de mais informações técnicas, não hesite em me perguntar. Há também uma enorme variedade de outras informações do 6502 na web. Google é seu amigo!


Parece haver uma disparidade nesta frase: "Se não houver mais entrada para ler, ele deve retornar um valor zero. Isso faz com que o EhBASIC continue pesquisando até que não seja zero".
Igby Largeman 16/10

Er, meu erro. Não expliquei bem. Eu quis explicar que o EhBASIC pesquisa o valor nesse local até que seja diferente de zero, o que permite saber que o byte é uma entrada válida do teclado. É por isso que, se não houver mais entrada para ler, o emulador retornará zero lá. Eu vou editar isso.
Mike C

Posso postar meu próprio núcleo 6502 eventualmente, mas vou aguardar algumas entradas de outras pessoas primeiro. Espero que alguém dê uma chance a este desafio. Havia algumas soluções para o desafio 8086, portanto, claramente, há pessoas suficientemente inteligentes aqui para fazer isso. 8086 é muito mais difícil!
Mike C

11
Eu adoraria tentar isso, embora não em nenhum sentido competitivo. O problema para mim é encontrar tempo. Eu acho que seria bom se você pudesse fornecer outro programa de teste que exercite o emulador completamente e produza alguma saída facilmente verificável, semelhante ao que foi feito para o desafio 8086.
Igby Largeman

2
Como você determina quem ganha? (tem que haver um vencedor) #

Respostas:


22

Pensei em ir em frente e postar minha própria implementação. É completamente destruído, mas é uma implementação completa.

  • 668 linhas de C. (sem contar linhas em branco ou apenas com comentários)
  • Suporta (acho) todas as instruções não documentadas.
  • Suporta BCD.
  • Tempo do ciclo do relógio da CPU. (incluindo ajustes em determinados agrupamentos de limites de página)
  • Pode executar instruções por etapa única ou especificando o número de ticks.
  • Suporta a conexão de uma função externa a ser chamada após cada instrução ser executada. Isso ocorreu porque era originalmente para um emulador de NES e eu usei isso para sincronização de áudio.
/ * Fake6502 CPU emulator core v1.1 *******************
 * (c) Mike Chambers 2011-2013 *
 **************************************************** *** /

#include <stdio.h>
#include <stdint.h>

// funções fornecidas externamente
uint8_t externo read6502 (endereço uint16_t);
write-void externo vazio6502 (endereço uint16_t, valor uint8_t);

// 6502 define
#define UNDOCUMENTED // quando definido, opcodes não documentados são tratados.
                     // caso contrário, eles são simplesmente tratados como NOPs.

// # define NES_CPU // quando definido, o decimal com código binário (BCD)
                     // o sinalizador de status não é respeitado pelo ADC e pelo SBC. o 2A03
                     // A CPU no Nintendo Entertainment System não
                     // suporta operação BCD.

#define FLAG_CARRY 0x01
#define FLAG_ZERO 0x02
#define FLAG_INTERRUPT 0x04
#define FLAG_DECIMAL 0x08
#definir FLAG_BREAK 0x10
#define FLAG_CONSTANT 0x20
#define FLAG_OVERFLOW 0x40
#define FLAG_SIGN 0x80

#define BASE_STACK 0x100

#define saveaccum (n) a = (uint8_t) ((n) e 0x00FF)


// macros modificador de sinalizador
#define setcarry () status | = FLAG_CARRY
#define clearcarry () status & = (~ FLAG_CARRY)
#define setzero () status | = FLAG_ZERO
#define clearzero () status & = (~ FLAG_ZERO)
#define setinterrupt () status | = FLAG_INTERRUPT
#define status de clearinterrupt () & = (~ FLAG_INTERRUPT)
#define setdecimal () status | = FLAG_DECIMAL
#define o status cleardecimal () & = (~ FLAG_DECIMAL)
#define setoverflow () status | = FLAG_OVERFLOW
#define clearoverflow () status & = (~ FLAG_OVERFLOW)
#define setsign () status | = FLAG_SIGN
#define o status clearsign () & = (~ FLAG_SIGN)


// macros de cálculo de sinalizador
#define zerocalc (n) {\
    if ((n) & 0x00FF) clearzero (); \
        else setzero (); \
}

#define signcalc (n) {\
    se ((n) & 0x0080) setsign (); \
        else clearsign (); \
}

#define carrycalc (n) {\
    se ((n) & 0xFF00) setcarry (); \
        else clearcarry (); \
}

#define overflowcalc (n, m, o) {/ * n = resultado, m = acumulador, o = memória * / \
    if (((n) ^ (uint16_t) (m)) & (n) ^ (o)) & 0x0080) setoverflow (); \
        else clearoverflow (); \
}


// 6502 registradores da CPU
uint16_t pc;
uint8_t sp, a, x, y, status = FLAG_CONSTANT;


// variáveis ​​auxiliares
instruções uint64_t = 0; // monitora o total de instruções executadas
uint32_t clockticks6502 = 0, clockgoal6502 = 0;
uint16_t oldpc, ea, reladdr, valor, resultado;
uint8_t opcode, status antigo;

// algumas funções gerais usadas por várias outras funções
void push16 (uint16_t pushval) {
    write6502 (BASE_STACK + sp, (valor do push >> 8) & 0xFF);
    write6502 (BASE_STACK + ((sp - 1) & 0xFF), pushval & 0xFF);
    sp = 2;
}

void push8 (uint8_t pushval) {
    write6502 (BASE_STACK + sp--, pushval);
}

uint16_t pull16 () {
    uint16_t temp16;
    temp16 = read6502 (BASE_STACK + ((sp + 1) & 0xFF)) | (uint16_t) read6502 (BASE_STACK + ((sp + 2) & 0xFF)) << 8);
    sp + = 2;
    retorno (temp16);
}

uint8_t pull8 () {
    return (read6502 (BASE_STACK + ++ sp));
}

void reset6502 () {
    pc = (uint16_t) read6502 (0xFFFC) | ((uint16_t) leia6502 (0xFFFD) << 8);
    a = 0;
    x = 0;
    y = 0;
    sp = 0xFD;
    status | = FLAG_CONSTANT;
}


static void (* addrtable [256]) ();
estático vazio (* optable [256]) ();
uint8_t penaltyop, penaltyaddr;

// funções do modo de endereçamento, calcula endereços efetivos
static void imp () {// implícita
}

static void acc () {// acumulador
}

static void imm () {// imediato
    ea = pc ++;
}

static void zp () {// zero-page
    ea = (uint16_t) read6502 ((uint16_t) pc ++);
}

static void zpx () {// página zero, X
    ea = ((uint16_t) read6502 ((uint16_t) pc ++) + (uint16_t) x) & 0xFF; // envolvente de página zero
}

static void zpy () {// página zero, Y
    ea = ((uint16_t) read6502 ((uint16_t) pc ++) + (uint16_t) y) & 0xFF; // envolvente de página zero
}

static void rel () {// relativo para operações de filial (valor imediato de 8 bits, sinal estendido)
    reladdr = (uint16_t) read6502 (pc ++);
    if (reladdr & 0x80) reladdr | = 0xFF00;
}

static void abso () {// absoluto
    ea = (uint16_t) leitura6502 (pc) | ((uint16_t) leia6502 (pc + 1) << 8);
    pc + = 2;
}

static void absx () {// absoluto, X
    página inicial do uint16_t;
    ea = ((uint16_t) leia6502 (pc) | ((uint16_t) leia6502 (pc + 1) << 8));
    página inicial = ea & 0xFF00;
    ea + = (uint16_t) x;

    if (startpage! = (ea & 0xFF00)) {// um ciclo de penlty para cruzamento de páginas em alguns códigos de operação
        penaltyaddr = 1;
    }

    pc + = 2;
}

static void absy () {// absoluto, Y
    página inicial do uint16_t;
    ea = ((uint16_t) leia6502 (pc) | ((uint16_t) leia6502 (pc + 1) << 8));
    página inicial = ea & 0xFF00;
    ea + = (uint16_t) y;

    if (startpage! = (ea & 0xFF00)) {// um ciclo de penlty para cruzamento de páginas em alguns códigos de operação
        penaltyaddr = 1;
    }

    pc + = 2;
}

static void ind () {// indireto
    uint16_t eahelp, eahelp2;
    eahelp = (uint16_t) leia6502 (pc) | (uint16_t) ((uint16_t) leia6502 (pc + 1) << 8);
    eahelp2 = (eahelp & 0xFF00) | ((ajuda + 1) & 0x00FF); // replicar o erro envolvente do limite da página 6502
    ea = (uint16_t) read6502 (eahelp) | ((uint16_t) read6502 (eahelp2) << 8);
    pc + = 2;
}

static void indx () {// (indireto, X)
    uint16_t eahelp;
    eahelp = (uint16_t) (((uint16_t) leia6502 (pc ++) + (uint16_t) x) & 0xFF); // envolvente de página zero para ponteiro de tabela
    ea = (uint16_t) read6502 (eahelp & 0x00FF) | ((uint16_t) read6502 ((eahelp + 1) & 0x00FF) << 8);
}

static void indy () {// (indireto), Y
    uint16_t eahelp, eahelp2, página inicial;
    eahelp = (uint16_t) read6502 (pc ++);
    eahelp2 = (eahelp & 0xFF00) | ((ajuda + 1) & 0x00FF); // envolvente de página zero
    ea = (uint16_t) read6502 (eahelp) | ((uint16_t) read6502 (eahelp2) << 8);
    página inicial = ea & 0xFF00;
    ea + = (uint16_t) y;

    if (startpage! = (ea & 0xFF00)) {// um ciclo de penlty para cruzamento de páginas em alguns códigos de operação
        penaltyaddr = 1;
    }
}

static uint16_t getvalue () {
    if (addrtable [opcode] == acc) return ((uint16_t) a);
        else return ((uint16_t) leia6502 (e a));
}

putvalue vazio estático (salvamento uint16_t) {
    if (addrtable [opcode] == acc) a = (uint8_t) (salvamento & 0x00FF);
        else write6502 (e a, (saveval & 0x00FF));
}


// funções do manipulador de instruções
static void adc () {
    penaltyop = 1;
    valor = getvalue ();
    resultado = (uint16_t) a + valor + (uint16_t) (status & FLAG_CARRY);

    carrycalc (resultado);
    zerocalc (resultado);
    overflowcalc (resultado, a, valor);
    signcalc (resultado);

    #ifndef NES_CPU
    if (status & FLAG_DECIMAL) {
        clearcarry ();

        if ((a & 0x0F)> 0x09) {
            a + = 0x06;
        }
        if ((a & 0xF0)> 0x90) {
            a + = 0x60;
            setcarry ();
        }

        clockticks6502 ++;
    }
    #fim se

    saveaccum (resultado);
}

estático e () {
    penaltyop = 1;
    valor = getvalue ();
    resultado = (uint16_t) a & value;

    zerocalc (resultado);
    signcalc (resultado);

    saveaccum (resultado);
}

static void asl () {
    valor = getvalue ();
    resultado = valor << 1;

    carrycalc (resultado);
    zerocalc (resultado);
    signcalc (resultado);

    putvalue (resultado);
}

static void cco () {
    if ((status & FLAG_CARRY) == 0) {
        oldpc = pc;
        pc + = reladdr;
        if ((oldpc & 0xFF00)! = (pc & 0xFF00)) clockticks6502 + = 2; // verifica se o salto ultrapassou o limite da página
            else clockticks6502 ++;
    }
}

static void bcs () {
    if ((status & FLAG_CARRY) == FLAG_CARRY) {
        oldpc = pc;
        pc + = reladdr;
        if ((oldpc & 0xFF00)! = (pc & 0xFF00)) clockticks6502 + = 2; // verifica se o salto ultrapassou o limite da página
            else clockticks6502 ++;
    }
}

static void beq () {
    if ((status & FLAG_ZERO) == FLAG_ZERO) {
        oldpc = pc;
        pc + = reladdr;
        if ((oldpc & 0xFF00)! = (pc & 0xFF00)) clockticks6502 + = 2; // verifica se o salto ultrapassou o limite da página
            else clockticks6502 ++;
    }
}

bit vazio estático () {
    valor = getvalue ();
    resultado = (uint16_t) a & value;

    zerocalc (resultado);
    status = (status & 0x3F) | (uint8_t) (valor & 0xC0);
}

estático vazio bmi () {
    if ((status & FLAG_SIGN) == FLAG_SIGN) {
        oldpc = pc;
        pc + = reladdr;
        if ((oldpc & 0xFF00)! = (pc & 0xFF00)) clockticks6502 + = 2; // verifica se o salto ultrapassou o limite da página
            else clockticks6502 ++;
    }
}

static void bne () {
    if ((status & FLAG_ZERO) == 0) {
        oldpc = pc;
        pc + = reladdr;
        if ((oldpc & 0xFF00)! = (pc & 0xFF00)) clockticks6502 + = 2; // verifica se o salto ultrapassou o limite da página
            else clockticks6502 ++;
    }
}

static void bpl () {
    if ((status & FLAG_SIGN) == 0) {
        oldpc = pc;
        pc + = reladdr;
        if ((oldpc & 0xFF00)! = (pc & 0xFF00)) clockticks6502 + = 2; // verifica se o salto ultrapassou o limite da página
            else clockticks6502 ++;
    }
}

static void brk () {
    pc ++;
    push16 (pc); // coloca o próximo endereço de instrução na pilha
    push8 (status | FLAG_BREAK); // envia o status da CPU para a pilha
    setinterrupt (); // definir sinalizador de interrupção
    pc = (uint16_t) leitura6502 (0xFFFE) | ((uint16_t) leia6502 (0xFFFF) << 8);
}

static void bvc () {
    if ((status & FLAG_OVERFLOW) == 0) {
        oldpc = pc;
        pc + = reladdr;
        if ((oldpc & 0xFF00)! = (pc & 0xFF00)) clockticks6502 + = 2; // verifica se o salto ultrapassou o limite da página
            else clockticks6502 ++;
    }
}

static void bvs () {
    if ((status & FLAG_OVERFLOW) == FLAG_OVERFLOW) {
        oldpc = pc;
        pc + = reladdr;
        if ((oldpc & 0xFF00)! = (pc & 0xFF00)) clockticks6502 + = 2; // verifica se o salto ultrapassou o limite da página
            else clockticks6502 ++;
    }
}

static void clc () {
    clearcarry ();
}

static void cld () {
    cleardecimal ();
}

static void cli () {
    clearinterrupt ();
}

static void clv () {
    clearoverflow ();
}

static void cmp () {
    penaltyop = 1;
    valor = getvalue ();
    resultado = (uint16_t) a - valor;

    if (a> = (uint8_t) (valor & 0x00FF)) setcarry ();
        caso contrário clearcarry ();
    if (a == (uint8_t) (valor & 0x00FF)) setzero ();
        mais clearzero ();
    signcalc (resultado);
}

static void cpx () {
    valor = getvalue ();
    resultado = (uint16_t) x - valor;

    if (x> = (uint8_t) (valor & 0x00FF)) setcarry ();
        caso contrário clearcarry ();
    if (x == (uint8_t) (valor & 0x00FF)) setzero ();
        mais clearzero ();
    signcalc (resultado);
}

static void cpy () {
    valor = getvalue ();
    resultado = (uint16_t) y - valor;

    if (y> = (uint8_t) (valor & 0x00FF)) setcarry ();
        caso contrário clearcarry ();
    if (y == (uint8_t) (valor & 0x00FF)) setzero ();
        mais clearzero ();
    signcalc (resultado);
}

static void dec () {
    valor = getvalue ();
    resultado = valor - 1;

    zerocalc (resultado);
    signcalc (resultado);

    putvalue (resultado);
}

static void dex () {
    x--;

    zerocalc (x);
    signcalc (x);
}

static void dey () {
    y--;

    zerocalco (y);
    signcalc (y);
}

static void eor () {
    penaltyop = 1;
    valor = getvalue ();
    resultado = (uint16_t) um valor ^;

    zerocalc (resultado);
    signcalc (resultado);

    saveaccum (resultado);
}

static void inc () {
    valor = getvalue ();
    resultado = valor + 1;

    zerocalc (resultado);
    signcalc (resultado);

    putvalue (resultado);
}

static void inx () {
    x ++;

    zerocalc (x);
    signcalc (x);
}

static void iny () {
    y ++;

    zerocalco (y);
    signcalc (y);
}

static void jmp () {
    pc = ea;
}

static void jsr () {
    push16 (pc - 1);
    pc = ea;
}

static void lda () {
    penaltyop = 1;
    valor = getvalue ();
    a = (uint8_t) (valor & 0x00FF);

    zerocalc (a);
    signcalc (a);
}

static void ldx () {
    penaltyop = 1;
    valor = getvalue ();
    x = (uint8_t) (valor & 0x00FF);

    zerocalc (x);
    signcalc (x);
}

static void ldy () {
    penaltyop = 1;
    valor = getvalue ();
    y = (uint8_t) (valor & 0x00FF);

    zerocalco (y);
    signcalc (y);
}

static void lsr () {
    valor = getvalue ();
    resultado = valor >> 1;

    if (valor & 1) setcarry ();
        caso contrário clearcarry ();
    zerocalc (resultado);
    signcalc (resultado);

    putvalue (resultado);
}

static void nop () {
    switch (opcode) {
        caso 0x1C:
        caso 0x3C:
        caso 0x5C:
        caso 0x7C:
        caso 0xDC:
        caso 0xFC:
            penaltyop = 1;
            quebrar;
    }
}

static void ora () {
    penaltyop = 1;
    valor = getvalue ();
    resultado = (uint16_t) a | valor;

    zerocalc (resultado);
    signcalc (resultado);

    saveaccum (resultado);
}

static void pha () {
    push8 (a);
}

static void php () {
    push8 (status | FLAG_BREAK);
}

static void pla () {
    a = pull8 ();

    zerocalc (a);
    signcalc (a);
}

static void plp () {
    status = pull8 () | FLAG_CONSTANT;
}

static void rol () {
    valor = getvalue ();
    resultado = (valor << 1) | (status & FLAG_CARRY);

    carrycalc (resultado);
    zerocalc (resultado);
    signcalc (resultado);

    putvalue (resultado);
}

static void ror () {
    valor = getvalue ();
    resultado = (valor >> 1) | ((status & FLAG_CARRY) << 7);

    if (valor & 1) setcarry ();
        caso contrário clearcarry ();
    zerocalc (resultado);
    signcalc (resultado);

    putvalue (resultado);
}

static void rti () {
    status = pull8 ();
    valor = pull16 ();
    pc = valor;
}

static void rts () {
    valor = pull16 ();
    pc = valor + 1;
}

static void sbc () {
    penaltyop = 1;
    valor = getvalue () ^ 0x00FF;
    resultado = (uint16_t) a + valor + (uint16_t) (status & FLAG_CARRY);

    carrycalc (resultado);
    zerocalc (resultado);
    overflowcalc (resultado, a, valor);
    signcalc (resultado);

    #ifndef NES_CPU
    if (status & FLAG_DECIMAL) {
        clearcarry ();

        a - = 0x66;
        if ((a & 0x0F)> 0x09) {
            a + = 0x06;
        }
        if ((a & 0xF0)> 0x90) {
            a + = 0x60;
            setcarry ();
        }

        clockticks6502 ++;
    }
    #fim se

    saveaccum (resultado);
}

estático vazio sec () {
    setcarry ();
}

estático vazio sed () {
    setdecimal ();
}

estático vazio sei () {
    setinterrupt ();
}

staid nulo estático () {
    putvalue (a);
}

static void stx () {
    putvalue (x);
}

static void sty () {
    putvalue (y);
}

imposto nulo estático () {
    x = a;

    zerocalc (x);
    signcalc (x);
}

static void tay () {
    y = a;

    zerocalco (y);
    signcalc (y);
}

static void tsx () {
    x = sp;

    zerocalc (x);
    signcalc (x);
}

static void txa () {
    a = x;

    zerocalc (a);
    signcalc (a);
}

static void txs () {
    sp = x;
}

static void tya () {
    a = y;

    zerocalc (a);
    signcalc (a);
}

// instruções não documentadas
#ifdef UNDOCUMENTED
    estático vazio lax () {
        lda ();
        LDX ();
    }

    sax vazio estático () {
        sta ();
        stx ();
        putvalue (a & x);
        if (penaltyop && penaltyaddr) clockticks6502--;
    }

    static void dcp () {
        dec ();
        cmp ();
        if (penaltyop && penaltyaddr) clockticks6502--;
    }

    static void isb () {
        inc ();
        sbc ();
        if (penaltyop && penaltyaddr) clockticks6502--;
    }

    static void slo () {
        asl ();
        ora ();
        if (penaltyop && penaltyaddr) clockticks6502--;
    }

    static void rla () {
        rol ();
        e();
        if (penaltyop && penaltyaddr) clockticks6502--;
    }

    static void sre () {
        LSR ();
        eor ();
        if (penaltyop && penaltyaddr) clockticks6502--;
    }

    static void rra () {
        ror ();
        adc ();
        if (penaltyop && penaltyaddr) clockticks6502--;
    }
#outro
    #define lax nop
    #define sax nop
    #define dcp nop
    #define isb nop
    #define slo nop
    #define rla nop
    #define sre nop
    #define rra nop
#fim se


static void (* addrtable [256]) () = {
/ * 0 1 | 2 3 4 5 6 7 8 9 A B C D E F * /
/ * 0 * / imp, indx, imp, indx, zp, zp, zp, zp, imp, imm, acc, imm, abso, abso, abso, abso, / * 0 * /
/ * 1 * / rel, indy, imp, indy, zpx, zpx, zpx, zpx, zpx, imp, absy, imp, absy, absx, absx, absx, absx, / * 1 * /
/ * 2 * / abso, indx, imp, indx, zp, zp, zp, zp, imp, imm, acc, imm, abso, abso, abso, abso, / * 2 * /
/ * 3 * / rel, indy, imp, indy, zpx, zpx, zpx, zpx, zpx, imp, absy, imp, absy, absx, absx, absx, absx, / * 3 * /
/ * 4 * / imp, indx, imp, indx, zp, zp, zp, zp, imp, imm, acc, imm, abso, abso, abso, abso, / * 4 * /
/ * 5 * / rel, indy, imp, indy, zpx, zpx, zpx, zpx, zpx, imp, absy, imp, absy, absx, absx, absx, absx, / * 5 * /
/ * 6 * / imp, indx, imp, indx, zp, zp, zp, zp, imp, imm, acc, imm, ind, abso, abso, abso, / * 6 * /
/ * 7 * / rel, indy, imp, indy, zpx, zpx, zpx, zpx, zpx, imp, absy, imp, absy, absx, absx, absx, absx, / * 7 * /
/ * 8 * / imm, indx, imm, indx, zp, zp, zp, zp, zp, imp, imm, imp, im, im, abso, abso, abso, abso, / * 8 * /
/ * 9 * / rel, indy, imp, indy, zpx, zpx, zpy, zpy, imp, absy, imp, absy, absx, absx, absy, absy, / * 9 * /
/ * A * / imm, indx, imm, indx, zp, zp, zp, zp, zp, imp, imm, imp, imm, abso, abso, abso, abso, / * A * /
/ * B * / rel, indy, imp, indy, zpx, zpx, zpy, zpy, imp, absy, imp, absy, absx, absx, absy, absy, / * B * /
/ * C * / imm, indx, imm, indx, zp, zp, zp, zp, zp, imp, imm, imp, imm, abso, abso, abso, abso, / * C * /
/ * D * / rel, indy, imp, indy, zpx, zpx, zpx, zpx, zpx, imp, absy, imp, absy, absx, absx, absx, absx, / * D * /
/ * E * / imm, indx, imm, indx, zp, zp, zp, zp, zp, imp, imm, imp, imm, abso, abso, abso, abso, / * E * /
/ * F * / rel, indy, imp, indy, zpx, zpx, zpx, zpx, zpx, imp, absy, imp, absy, absx, absx, absx, absx / * F * /
};

static void (* optable [256]) () = {
/ * 0 1 | 2 3 4 5 6 7 8 9 A B C D E F * /
/ * 0 * / brk, ora, nop, slo, nop, ora, asl, slo, php, ora, asl, nop, nop, ora, asl, slo, / * 0 * /
/ * 1 * / bpl, ora, nop, slo, nop, ora, asl, slo, clc, ora, nop, slo, nop, ora, asl, slo, / * 1 * /
/ * 2 * / jsr, e, nop, rla, bit e, rol, rla, plp e, rol, nop, bit e, rol, rla, / * 2 * /
/ * 3 * / bmi, e, nop, rla, nop e, rol, rla, sec, e, nop, rla, nop e, rol, rla, / * 3 * /
/ * 4 * / rti, eor, nop, sre, nop, eor, lsr, sre, pha, eor, lsr, nop, jmp, eor, lsr, sre, / * 4 * /
/ * 5 * / bvc, eor, nop, sre, nop, eor, lsr, sre, cli, eor, nop, sre, nop, eor, lsr, sre, / * 5 * /
/ * 6 * / rts, adc, nop, rra, nop, adc, ror, rra, pla, adc, ror, nop, jmp, adc, ror, rra, / * 6 * /
/ * 7 * / bvs, adc, nop, rra, nop, adc, ror, rra, sei, adc, nop, rra, nop, adc, ror, rra, / * 7 * /
/ * 8 * / nop, sta, nop, sax, chiqueiro, sta, stx, sax, dey, nop, txa, nop, chiqueiro, sta, stx, sax, / * 8 * /
/ * 9 * / bcc, sta, nop, nop, sty, sta, stx, sax, tya, sta, txs, nop, nop, sta, nop, nop, / * 9 * /
/ * A * / ldy, lda, ldx, lax, ldy, lda, ldx, lax, tay, lda, imposto, nop, ldy, lda, ldx, lax, / * A * /
/ * B * / bcs, lda, nop, lax, ldy, lda, ldx, lax, clv, lda, tsx, lax, ldy, lda, ldx, lax, / * B * /
/ * C * / cpy, cmp, nop, dcp, cpy, cmp, dec, dcp, iny, cmp, dex, nop, cpy, cmp, dec, dcp, / * C * /
/ * D * / bne, cmp, nop, dcp, nop, cmp, dec, dcp, cld, cmp, nop, dcp, nop, cmp, dec, dcp, / * D * /
/ * E * / cpx, sbc, nop, isb, cpx, sbc, inc, isb, inx, sbc, nop, sbc, cpx, sbc, inc, isb, / * E * /
/ * F * / beq, sbc, nop, isb, nop, sbc, inc, isb, sed, sbc, nop, isb, nop, sbc, inc, isb / * F * /
};

tabela estática const uint32_t tick [256] = {
/ * 0 1 | 2 3 4 5 6 7 8 9 A B C D E F * /
/ * 0 * / 7, 6, 2, 8, 3, 3, 5, 5, 3, 2, 2, 2, 4, 4, 6, 6, / * 0 * /
/ * 1 * / 2, 5, 2, 8, 4, 4, 6, 6, 2, 4, 2, 7, 4, 4, 7, 7, / * 1 * /
/ * 2 * / 6, 6, 2, 8, 3, 3, 5, 5, 4, 2, 2, 2, 4, 4, 6, 6, / * 2 * /
/ * 3 * / 2, 5, 2, 8, 4, 4, 6, 6, 2, 4, 2, 7, 4, 4, 7, 7, / * 3 * /
/ * 4 * / 6, 6, 2, 8, 3, 3, 5, 5, 3, 2, 2, 2, 3, 4, 6, 6, / * 4 * /
/ * 5 * / 2, 5, 2, 8, 4, 4, 6, 6, 2, 4, 2, 7, 4, 4, 7, 7, / * 5 * /
/ * 6 * / 6, 6, 2, 8, 3, 3, 5, 5, 4, 2, 2, 2, 5, 4, 6, 6, / * 6 * /
/ * 7 * / 2, 5, 2, 8, 4, 4, 6, 6, 2, 4, 2, 7, 4, 4, 7, 7, / * 7 * /
/ * 8 * / 2, 6, 2, 6, 3, 3, 3, 3, 2, 2, 2, 2, 4, 4, 4, 4, / * 8 * /
/ * 9 * / 2, 6, 2, 6, 4, 4, 4, 4, 2, 5, 2, 5, 5, 5, 5, 5, / * 9 * /
/ * A * / 2, 6, 2, 6, 3, 3, 3, 3, 2, 2, 2, 2, 4, 4, 4, 4, / * A * /
/ * B * / 2, 5, 2, 5, 4, 4, 4, 4, 2, 4, 2, 4, 4, 4, 4, 4, / * B * /
/ * C * / 2, 6, 2, 8, 3, 3, 5, 5, 2, 2, 2, 2, 4, 4, 6, 6, / * C * /
/ * D * / 2, 5, 2, 8, 4, 4, 6, 6, 2, 4, 2, 7, 4, 4, 7, 7, / * D * /
/ * E * / 2, 6, 2, 8, 3, 3, 5, 5, 2, 2, 2, 2, 4, 4, 6, 6, / * E * /
/ * F * / 2, 5, 2, 8, 4, 4, 6, 6, 2, 4, 2, 7, 4, 4, 7, 7 / * F * /
};


nmi6502 () {
    push16 (pc);
    push8 (status);
    status | = FLAG_INTERRUPT;
    pc = (uint16_t) leitura6502 (0xFFFA) | ((uint16_t) leia6502 (0xFFFB) << 8);
}

voq6502 () {
    push16 (pc);
    push8 (status);
    status | = FLAG_INTERRUPT;
    pc = (uint16_t) leitura6502 (0xFFFE) | ((uint16_t) leia6502 (0xFFFF) << 8);
}

uint8_t callexternal = 0;
vazio (* loopexternal) ();

void exec6502 (número de ticks uint32_t) {
    clockgoal6502 + = contagem de ticks;

    while (clockticks6502 <clockgoal6502) {
        opcode = read6502 (pc ++);

        penaltyop = 0;
        penaltyaddr = 0;

        (* addrtable [opcode]) ();
        (* optable [opcode]) ();
        clockticks6502 + = ticktable [opcode];
        if (penaltyopop && penaltyaddr) clockticks6502 ++;

        instruções ++;

        if (callexternal) (* loopexternal) ();
    }

}

nulo step6502 () {
    opcode = read6502 (pc ++);

    penaltyop = 0;
    penaltyaddr = 0;

    (* addrtable [opcode]) ();
    (* optable [opcode]) ();
    clockticks6502 + = ticktable [opcode];
    if (penaltyopop && penaltyaddr) clockticks6502 ++;
    clockgoal6502 = clockticks6502;

    instruções ++;

    if (callexternal) (* loopexternal) ();
}

void hookexternal (void * funcptr) {
    if (funcptr! = (void *) NULL) {
        loopexternal = funcptr;
        callexternal = 1;
    } outro callexternal = 0;
}

Para sua informação, se você usar o método de marcação de marcação de código (recuo por quatro espaços), ele estará em uma região rolável no tamanho de tela; e você não precisa html-ize <tag brackets>. ... Mas, para esta resposta, acho que é melhor do que é. Como implementação de referência, coloca o espaço necessário para um uso muito bom. ... Se / quando mais respostas chegarem, convém mudar para o recuo de 4 espaços para que não domine a página. US $ 0,02 ... Adoro a pergunta ... +1 +1 +1! Estou trabalhando no meu, não se preocupe! :)
luser Droog

21

Um emulador MOS 6502 em Haskell. Características incluem:

  • implementação precisa de bits, incluindo manipulação sutil de registros P e quebra de página durante a indexação e a indireção
  • E / S mapeada na memória, com detecção de loop de rotação (para que a CPU do host não fique presa enquanto aguarda a entrada)
  • Detecção de interrupção (saltos / ramificações para si próprio)
  • CPU implementada em exatamente 200 linhas e 6502 caracteres de código
  • A implementação da CPU é monada de estado puro

Esta é uma versão um pouco complexa de uma implementação completa (com mais recursos) que fiz para esse desafio que postarei mais tarde. Apesar do golfe, o código ainda é simples. O único recurso ausente conhecido é o modo BCD (disponível ...)

Executa o código ehBASIC:

& ghc -O2 -o z6502min -Wall -fwarn-tabs -fno-warn-missing-signatures Z6502.hs
[1 of 1] Compiling Main             ( Z6502.hs, Z6502.o )

Z6502.hs:173:1: Warning: Defined but not used: `nmi'

Z6502.hs:174:1: Warning: Defined but not used: `irq'
Linking z6502min ...

& ./z6502min ehbasic.bin 
6502 EhBASIC [C]old/[W]arm ?

Memory size ? 

48383 Bytes free

Enhanced BASIC 2.22

Ready
PRINT "Hello World"
Hello World

Ready
10 FOR I = 1 TO 10
20 FOR J = 1 TO I
30 PRINT J;
40 NEXT J
50 PRINT
60 NEXT I
RUN
 1
 1 2
 1 2 3
 1 2 3 4
 1 2 3 4 5
 1 2 3 4 5 6
 1 2 3 4 5 6 7
 1 2 3 4 5 6 7 8
 1 2 3 4 5 6 7 8 9
 1 2 3 4 5 6 7 8 9 10

Ready

E o código, com menos de 300 linhas no total:

-- Z6502: a 6502 emulator
-- by Mark Lentczner

module Main (main) where

import Control.Applicative
import Control.Monad
import Control.Monad.State.Strict
import Data.Bits
import qualified Data.ByteString as B
import Data.List
import qualified Data.Vector as V
import qualified Data.Vector.Unboxed as VU
import Data.Word
import System.Environment
import System.IO

{- === CPU: 200 lines, 6502 characters === -}
type Addr = Word16
toAd = fromIntegral :: Int -> Addr
addr :: Word8 -> Word8 -> Addr
addr lo hi = fromIntegral hi `shiftL` 8 .|. fromIntegral lo
lohi ad = (fromIntegral ad, fromIntegral $ ad `shiftR` 8)
zeroPage v = addr v 0
index ad idx = ad + fromIntegral (idx :: Word8)
relativeAddr ad off = index ad off - if off > 0x7f then 256 else 0

data Page = Missing | ROM !B.ByteString | RAM !(VU.Vector Word8)
type Memory = V.Vector Page
emptyMemory = V.replicate 256 Missing

fetchByte ad mv = case mv V.! hi of
    ROM bs -> B.index bs lo
    RAM vs -> vs VU.! lo
    _ -> 0
  where (hi,lo) = fromIntegral ad `divMod` 256
storeByte ad v mv = case mv V.! hi of
    RAM vs -> mv V.// [(hi, RAM $ vs VU.// [(lo, v)])]
    _ -> mv
  where (hi,lo) = fromIntegral ad `divMod` 256

data S = S { rA, rX, rY, rP, rS :: !Word8, rPC :: !Addr
           , mem :: !Memory, busR,busW :: Maybe Addr }
powerOnState = S 0 0 0 0 0 0 emptyMemory Nothing Nothing

[bitN, bitV, bitX, bitB, bitD, bitI, bitZ, bitC] = [7,6..0]
toBit b t v = (if t then setBit else clearBit) v b
toZ v = toBit bitZ (v == 0)
toZN v = toBit bitZ (v == 0) . toBit bitN (testBit v 7)
to67 v = toBit bitV (testBit v 6) . toBit bitN (testBit v 7)

setZN v = modify $ \s -> s { rP = toZN v $ rP s }
setAZN v = modify $ \s -> s { rA = v, rP=toZN v $ rP s }
setXZN v = modify $ \s -> s { rX = v, rP=toZN v $ rP s }
setYZN v = modify $ \s -> s { rY = v, rP=toZN v $ rP s }
setZVNbit (a,v) = modify $ \s -> s { rP = toZ (a .&. v) $ to67 v $ rP s }
setACZVN (c,v,a) = modify $ \s ->
    s { rA = a, rP = toBit bitC c $ toBit bitV v $ toZN a $ rP s }
setCZN (c,v) = modify $ \s -> s { rP = toBit bitC c $ toZN v $ rP s }

fetch a = state $ \s -> (fetchByte a $ mem s, s { busR = Just a })
fetchIndirectAddr a0 = do
    m <- gets mem
    let (lo,hi) = lohi a0
        a1 = addr (lo+1) hi
        bLo = fetchByte a0 m
        bHi = fetchByte a1 m
    return $ addr bLo bHi
store a v = modify $ \s -> s { mem = storeByte a v $ mem s, busW = Just a }

clearBus = modify $ \s -> s { busR = Nothing, busW = Nothing }
nextPC = state $ \s -> (rPC s, s { rPC = rPC s + 1 })
fetchPC = nextPC >>= \a -> gets mem >>= return . fetchByte a

adjSP n m = state $ \s -> (addr (rS s + m) 1, s { rS = rS s + n })
push v = adjSP (-1) 0 >>= flip store v
pull = adjSP 1 1 >>= fetch
pushAddr a = let (lo, hi) = lohi a in push hi >> push lo
pullAddr = addr <$> pull <*> pull
pushP fromSW = gets rP >>= push . toBit bitX True . toBit bitB fromSW
pullP = pull >>= \v -> modify $ \s -> s { rP = v .&. 0xCF }

indexX a = gets rX >>= return . index a
indexY a = gets rY >>= return . index a
aImm=nextPC
aZero=zeroPage<$>fetchPC
aZeroX=zeroPage<$>((+)<$>fetchPC<*>gets rX)
aZeroY=zeroPage<$>((+)<$>fetchPC<*>gets rY)
aRel=flip relativeAddr<$>fetchPC<*>gets rPC
aAbs=addr<$>fetchPC<*>fetchPC
aAbsX=aAbs>>=indexX
aAbsY=aAbs>>=indexY
aInd=aAbs>>=fetchIndirectAddr
aIndIdx=aZeroX>>=fetchIndirectAddr
aIdxInd=aZero>>=fetchIndirectAddr>>=indexY

decode = V.fromList $ concat $ transpose
 [[iBRK,iBPL,iJSR&aAbs,iBMI,iRTI,iBVC,iRTS,iBVS
  ,iErr,iBCC,iLDY&aImm,iBCS,iCPY&aImm,iBNE,iCPX&aImm,iBEQ]
 ,cAlu aIndIdx aIdxInd
 ,cErr//(10,iLDX&aImm)
 ,cErr
 ,[iErr,iErr,iBIT&aZero,iErr,iErr,iErr,iErr,iErr
  ,iSTY&aZero,iSTY&aZeroX,iLDY&aZero,iLDY&aZeroX,iCPY&aZero,iErr,iCPX&aZero,iErr]
 ,cAlu aZero aZeroX
 ,cBit aZero aZeroX//(9,iSTX&aZeroY)//(11,iLDX&aZeroY)
 ,cErr
 ,[iPHP,iCLC,iPLP,iSEC,iPHA,iCLI,iPLA,iSEI,iDEY,iTYA,iTAY,iCLV,iINY,iCLD,iINX,iSED]
 ,cAlu aImm aAbsY//(8,iErr)
 ,[iASLa,iErr,iROLa,iErr,iLSRa,iErr,iRORa,iErr
  ,iTXA,iTXS,iTAX,iTSX,iDEX,iErr,iNOP,iErr ]
 ,cErr
 ,[iErr,iErr,iBIT&aAbs,iErr,iJMP&aAbs,iErr,iJMP&aInd,iErr
  ,iSTY&aAbs,iErr,iLDY&aAbs,iLDY&aAbsX,iCPY&aAbs,iErr,iCPX&aAbs,iErr]
 ,cAlu aAbs aAbsX
 ,cBit aAbs aAbsX//(9,iErr)//(11,iLDX&aAbsY)
 ,cErr
 ]
cAlt is e o = is >>= (\i->[i&e,i&o])
cAlu = cAlt [iORA,iAND,iEOR,iADC,iSTA,iLDA,iCMP,iSBC]
cBit = cAlt [iASL,iROL,iLSR,iROR,iSTX,iLDX,iDEC,iINC]
cErr = replicate 16 iErr
is//(n,j) = let (f,_:h) = splitAt n is in f++j:h
i&a=a>>=i

loadIns l a = fetch a >>= l
storeIns f a = f >>= store a

aluIns set op ad = do
    v <- fetch ad
    a <- gets rA
    set $ op a v

modIns op a = fetch a >>= op >>= store a
modAccIns op = gets rA >>= op >>= \v -> modify $ \s -> s { rA = v }

stIns b op = modify $ \s -> s { rP = op (rP s) b }

jump a = modify $ \s -> s { rPC = a }
brIns b t = do
    a <- aRel
    p <- gets rP
    when (testBit p b == t) $ jump a

adcOp a b cIn = (cOut, v, s)
  where
    h = b + (if cIn then 1 else 0)
    s = a + h
    cOut = h < b || s < a
    v = testBit (a `xor` s .&. b `xor` s) 7
sbcOp a b cIn = adcOp a (complement b) cIn
carryOp f = gets rP >>= setACZVN . f . flip testBit bitC

cmpOp a b = (a >= b, a - b)

shiftOp shifter isRot inBit outBit v = do
    s <- get
    let newC = testBit v outBit
        bitIn = toBit inBit $ isRot && testBit (rP s) bitC
        v' = bitIn $ shifter v 1
    put s { rP = toBit bitC newC $ toZN v' $ rP s }
    return v'

vector a = fetchIndirectAddr a >>= jump

interrupt isBrk pcOffset a = do
    gets rPC >>= pushAddr . flip index pcOffset
    pushP isBrk
    iSEI
    vector a

reset = vector $ toAd 0xFFFC
nmi = interrupt False 0 $ toAd 0xFFFA
irq = interrupt False 0 $ toAd 0xFFFE

[iORA,iAND,iEOR]=aluIns setAZN<$>[(.|.),(.&.),xor]
[iADC,iSBC]=aluIns carryOp<$>[adcOp,sbcOp]
iSTA=storeIns$gets rA
iLDA=loadIns setAZN
iCMP=aluIns setCZN cmpOp

[iSTX,iSTY]=storeIns.gets<$>[rX,rY]
[iLDX,iLDY]=loadIns<$>[setXZN,setYZN]
[iCPX,iCPY]=(\r a->gets r>>= \v->fetch a>>=setCZN.cmpOp v)<$>[rX,rY]
[iDEC,iINC]=modIns.(\i v->setZN(v+i)>>return(v+i))<$>[-1,1]
[iDEX,iINX]=(gets rX>>=).(setXZN.).(+)<$>[-1,1]
[iDEY,iINY]=(gets rY>>=).(setYZN.).(+)<$>[-1,1]

shOps=[shiftOp d r b(7-b)|(d,b)<-[(shiftL,0),(shiftR,7)],r<-[False,True]]
[iASL,iROL,iLSR,iROR]=modIns<$>shOps
[iASLa,iROLa,iLSRa,iRORa]=modAccIns<$>shOps

iBIT=aluIns setZVNbit(,)
iJMP=jump

[iBPL,iBMI,iBVC,iBVS,iBCC,iBCS,iBNE,iBEQ]=brIns<$>[bitN,bitV,bitC,bitZ]<*>[False,True]
[iCLC,iSEC,iCLI,iSEI,iCLV,_,iCLD,iSED]=stIns<$>[bitC,bitI,bitV,bitD]<*>[clearBit,setBit]

iBRK=interrupt True 1 $ toAd 0xFFFE
iJSR a=gets rPC>>=pushAddr.(-1+)>>jump a
iRTI=iPLP>>pullAddr>>=jump
iRTS=pullAddr>>=jump.(1+)

iPHP=pushP True
iPLP=pullP
iPHA=gets rA>>=push
iPLA=pull>>=setAZN

iNOP=return ()

[iTAX,iTAY]=(gets rA>>=)<$>[setXZN,setYZN]
[iTXA,iTYA]=(>>=setAZN).gets<$>[rX,rY]
iTXS=modify $ \s -> s { rS=rX s }
iTSX=gets rS>>=setXZN

iErr=gets rPC>>=jump.(-1+)

executeOne = clearBus >> fetchPC >>= (decode V.!) . fromIntegral
{- === END OF CPU === -}


{- === MOTHERBOARD === -}
buildMemory rom =
    loadRAM 0xF0 1 $ loadRAM 0x00 ramSize $ loadROM romStart rom $ emptyMemory
  where
    ramSize = 256 - (B.length rom `div` 256)
    romStart = fromIntegral ramSize

    loadRAM p0 n = (V.// zip [p0..] (map RAM $ replicate n ramPage))
    ramPage = VU.replicate 256 0

    loadROM p0 bs = (V.// zip [p0..] (map ROM $ romPages bs))
    romPages b = case B.length b of
        l | l == 0    -> []
          | l < 256   -> [b `B.append` B.replicate (256 - l) 0]
          | l == 256  -> [b]
          | otherwise -> let (b0,bn) = B.splitAt 256 b in b0 : romPages bn

main = getArgs >>= go
  where
    go [romFile] = B.readFile romFile >>= exec . buildState . buildMemory
    go _ = putStrLn "agument should be a single ROM file"

    buildState m = execState reset (powerOnState { mem = m })

    exec s0 = do
        stopIO <- startIO
        loop (0 :: Int) s0
        stopIO

    loop n s = do
        let pcsp = (rPC s, rS s)
        (n',s') <- processIO n (execState executeOne s)
        let pcsp' = (rPC s', rS s')
        if pcsp /= pcsp'
            then (loop $! n') $! s'
            else do
                putStrLn $ "Execution snagged at " ++ show (fst pcsp')

    startIO = do
        ibuf <- hGetBuffering stdin
        obuf <- hGetBuffering stdout
        iecho <- hGetEcho stdin
        hSetBuffering stdin NoBuffering
        hSetBuffering stdout NoBuffering
        hSetEcho stdin False
        return $ do
            hSetEcho stdin iecho
            hSetBuffering stdin ibuf
            hSetBuffering stdout obuf
            putStr "\n\n"

    processIO n s = do
        when (busW s == Just outPortAddr) $ do
            let c = fetchByte outPortAddr $ mem s
            when (c /= 0) $ hPutChar stdout $ toEnum $ fromIntegral c
        if (busR s == Just inPortAddr)
            then do
                r <- if n < 16
                        then hWaitForInput stdin 50
                        else hReady stdin
                c <- if r then (fromIntegral . fromEnum) <$> hGetChar stdin else return 0
                let c' = if c == 0xA then 0xD else c
                let s' = s { mem = storeByte inPortAddr c' $ mem s }
                return (0,s')
            else return (n+1,s)

    inPortAddr = toAd 0xF004
    outPortAddr = toAd 0xF001

5
Bom trabalho! Muito pequeno. Não conheço Haskell, talvez deva aprender. Eu amo o fato de serem 6502 caracteres. :)
Mike C

6

Para qualquer pessoa interessada, pensei em compartilhar minha implementação do 6502 em C #. Tal como acontece com outros posts aqui, é completamente destruído, mas é uma implementação completa do recurso.

  • Suporta NMOS e CMOS
  • Inclui vários programas de teste, incluindo o teste AllSuite acima como testes de unidade.
  • Suporta BCD

Comecei este projeto criando uma planilha de instruções quando aprendi sobre a CPU. Percebi que poderia usar esta planilha para me poupar de digitar. Transformei isso em uma tabela de arquivo de texto que o emulador carrega para ajudar a contar ciclos e facilitar a saída da desmontagem.

O projeto inteiro está disponível no Github https://github.com/amensch/e6502

/*
 * e6502: A complete 6502 CPU emulator.
 * Copyright 2016 Adam Mensch
 */

using System;

namespace e6502CPU
{
    public enum e6502Type
    {
        CMOS,
        NMOS
    };

    public class e6502
    {
        // Main Register
        public byte A;

        // Index Registers
        public byte X;
        public byte Y;

        // Program Counter
        public ushort PC;

        // Stack Pointer
        // Memory location is hard coded to 0x01xx
        // Stack is descending (decrement on push, increment on pop)
        // 6502 is an empty stack so SP points to where next value is stored
        public byte SP;

        // Status Registers (in order bit 7 to 0)
        public bool NF;    // negative flag (N)
        public bool VF;    // overflow flag (V)
                           // bit 5 is unused
                           // bit 4 is the break flag however it is not a physical flag in the CPU
        public bool DF;    // binary coded decimal flag (D)
        public bool IF;    // interrupt flag (I)
        public bool ZF;    // zero flag (Z)
        public bool CF;    // carry flag (C)

        // RAM - 16 bit address bus means 64KB of addressable memory
        public byte[] memory;

        // List of op codes and their attributes
        private OpCodeTable _opCodeTable;

        // The current opcode
        private OpCodeRecord _currentOP;

        // Clock cycles to adjust due to page boundaries being crossed, branches taken, or NMOS/CMOS differences
        private int _extraCycles;

        // Flag for hardware interrupt (IRQ)
        public bool IRQWaiting { get; set; }

        // Flag for non maskable interrupt (NMI)
        public bool NMIWaiting { get; set; }

        public e6502Type _cpuType { get; set; }

        public e6502(e6502Type type)
        {
            memory = new byte[0x10000];
            _opCodeTable = new OpCodeTable();

            // Set these on instantiation so they are known values when using this object in testing.
            // Real programs should explicitly load these values before using them.
            A = 0;
            X = 0;
            Y = 0;
            SP = 0;
            PC = 0;
            NF = false;
            VF = false;
            DF = false;
            IF = true;
            ZF = false;
            CF = false;
            NMIWaiting = false;
            IRQWaiting = false;
            _cpuType = type;
        }

        public void Boot()
        {
            // On reset the addresses 0xfffc and 0xfffd are read and PC is loaded with this value.
            // It is expected that the initial program loaded will have these values set to something.
            // Most 6502 systems contain ROM in the upper region (around 0xe000-0xffff)
            PC = GetWordFromMemory(0xfffc);

            // interrupt disabled is set on powerup
            IF = true;

            NMIWaiting = false;
            IRQWaiting = false;
        }

        public void LoadProgram(ushort startingAddress, byte[] program)
        {
            program.CopyTo(memory, startingAddress);
            PC = startingAddress;
        }

        public string DasmNextInstruction()
        {
            OpCodeRecord oprec = _opCodeTable.OpCodes[ memory[PC] ];
            if (oprec.Bytes == 3)
                return oprec.Dasm( GetImmWord() );
            else
                return oprec.Dasm( GetImmByte() );
        }

        // returns # of clock cycles needed to execute the instruction
        public int ExecuteNext()
        {
            _extraCycles = 0;

            // Check for non maskable interrupt (has higher priority over IRQ)
            if (NMIWaiting)
            {
                DoIRQ(0xfffa);
                NMIWaiting = false;
                _extraCycles += 6;
            }
            // Check for hardware interrupt, if enabled
            else if (!IF)
            {
                if(IRQWaiting)
                {
                    DoIRQ(0xfffe);
                    IRQWaiting = false;
                    _extraCycles += 6;
                }
            }

            _currentOP = _opCodeTable.OpCodes[memory[PC]];

            ExecuteInstruction();

            return _currentOP.Cycles + _extraCycles;
        }

        private void ExecuteInstruction()
        {
            int result;
            int oper = GetOperand(_currentOP.AddressMode);

            switch (_currentOP.OpCode)
            {
                // ADC - add memory to accumulator with carry
                // A+M+C -> A,C (NZCV)
                case 0x61:
                case 0x65:
                case 0x69:
                case 0x6d:
                case 0x71:
                case 0x72:
                case 0x75:
                case 0x79:
                case 0x7d:

                    if (DF)
                    {
                        result = HexToBCD(A) + HexToBCD((byte)oper);
                        if (CF) result++;

                        CF = (result > 99);

                        if (result > 99 )
                        {
                            result -= 100;
                        }
                        ZF = (result == 0);

                        // convert decimal result to hex BCD result
                        A = BCDToHex(result);

                        // Unlike ZF and CF, the NF flag represents the MSB after conversion
                        // to BCD.
                        NF = (A > 0x7f);

                        // extra clock cycle on CMOS in decimal mode
                        if (_cpuType == e6502Type.CMOS)
                            _extraCycles++;
                    }
                    else
                    {
                        ADC((byte)oper);
                    }
                    PC += _currentOP.Bytes;
                    break;

                // AND - and memory with accumulator
                // A AND M -> A (NZ)
                case 0x21:
                case 0x25:
                case 0x29:
                case 0x2d:
                case 0x31:
                case 0x32:
                case 0x35:
                case 0x39:
                case 0x3d:
                    result = A & oper;

                    NF = ((result & 0x80) == 0x80);
                    ZF = ((result & 0xff) == 0x00);

                    A = (byte)result;
                    PC += _currentOP.Bytes;
                    break;

                // ASL - shift left one bit (NZC)
                // C <- (76543210) <- 0

                case 0x06:
                case 0x16:
                case 0x0a:
                case 0x0e:
                case 0x1e:

                    // On 65C02 (abs,X) takes one less clock cycle (but still add back 1 if page boundary crossed)
                    if (_currentOP.OpCode == 0x1e && _cpuType == e6502Type.CMOS)
                        _extraCycles--;

                    // shift bit 7 into carry
                    CF = (oper >= 0x80);

                    // shift operand
                    result = oper << 1;

                    NF = ((result & 0x80) == 0x80);
                    ZF = ((result & 0xff) == 0x00);

                    SaveOperand(_currentOP.AddressMode, result);
                    PC += _currentOP.Bytes;

                    break;

                // BBRx - test bit in memory (no flags)
                // Test the zero page location and branch of the specified bit is clear
                // These instructions are only available on Rockwell and WDC 65C02 chips.
                // Number of clock cycles is the same regardless if the branch is taken.
                case 0x0f:
                case 0x1f:
                case 0x2f:
                case 0x3f:
                case 0x4f:
                case 0x5f:
                case 0x6f:
                case 0x7f:

                    // upper nibble specifies the bit to check
                    byte check_bit = (byte)(_currentOP.OpCode >> 4);
                    byte check_value = 0x01;
                    for( int ii=0; ii < check_bit; ii++)
                    {
                        check_value = (byte)(check_value << 1);
                    }

                    // if the specified bit is 0 then branch
                    byte offset = memory[PC + 2];
                    PC += _currentOP.Bytes;

                    if ((oper & check_value) == 0x00)
                        PC += offset;

                    break;

                // BBSx - test bit in memory (no flags)
                // Test the zero page location and branch of the specified bit is set
                // These instructions are only available on Rockwell and WDC 65C02 chips.
                // Number of clock cycles is the same regardless if the branch is taken.
                case 0x8f:
                case 0x9f:
                case 0xaf:
                case 0xbf:
                case 0xcf:
                case 0xdf:
                case 0xef:
                case 0xff:

                    // upper nibble specifies the bit to check (but ignore bit 7)
                    check_bit = (byte)((_currentOP.OpCode & 0x70) >> 4);
                    check_value = 0x01;
                    for (int ii = 0; ii < check_bit; ii++)
                    {
                        check_value = (byte)(check_value << 1);
                    }

                    // if the specified bit is 1 then branch
                    offset = memory[PC + 2];
                    PC += _currentOP.Bytes;

                    if ((oper & check_value) == check_value)
                        PC += offset;

                    break;

                // BCC - branch on carry clear
                case 0x90:
                    PC += _currentOP.Bytes;
                    CheckBranch(!CF, oper);
                    break;

                // BCS - branch on carry set
                case 0xb0:
                    PC += _currentOP.Bytes;
                    CheckBranch(CF, oper);
                    break;

                // BEQ - branch on zero
                case 0xf0:
                    PC += _currentOP.Bytes;
                    CheckBranch(ZF, oper);
                    break;

                // BIT - test bits in memory with accumulator (NZV)
                // bits 7 and 6 of oper are transferred to bits 7 and 6 of conditional register (N and V)
                // the zero flag is set to the result of oper AND accumulator
                case 0x24:
                case 0x2c:
                // added by 65C02
                case 0x34:
                case 0x3c:
                case 0x89:
                    result = A & oper;

                    // The WDC programming manual for 65C02 indicates NV are unaffected in immediate mode.
                    // The extended op code test program reflects this.
                    if (_currentOP.AddressMode != AddressModes.Immediate)
                    {
                        NF = ((oper & 0x80) == 0x80);
                        VF = ((oper & 0x40) == 0x40);
                    }

                    ZF = ((result & 0xff) == 0x00);

                    PC += _currentOP.Bytes;
                    break;

                // BMI - branch on negative
                case 0x30:
                    PC += _currentOP.Bytes;
                    CheckBranch(NF, oper);
                    break;

                // BNE - branch on non zero
                case 0xd0:
                    PC += _currentOP.Bytes;
                    CheckBranch(!ZF, oper);
                    break;

                // BPL - branch on non negative
                case 0x10:
                    PC += _currentOP.Bytes;
                    CheckBranch(!NF, oper);
                    break;

                // BRA - unconditional branch to immediate address
                // NOTE: In OpcodeList.txt the number of clock cycles is one less than the documentation.
                // This is because CheckBranch() adds one when a branch is taken, which in this case is always.
                case 0x80:
                    PC += _currentOP.Bytes;
                    CheckBranch(true, oper);
                    break;

                // BRK - force break (I)
                case 0x00:

                    // This is a software interrupt (IRQ).  These events happen in a specific order.

                    // Processor adds two to the current PC
                    PC += 2;

                    // Call IRQ routine
                    DoIRQ(0xfffe, true);

                    // Whether or not the decimal flag is cleared depends on the type of 6502 CPU.
                    // The CMOS 65C02 clears this flag but the NMOS 6502 does not.
                    if( _cpuType == e6502Type.CMOS )
                        DF = false;

                    break;
                // BVC - branch on overflow clear
                case 0x50:
                    PC += _currentOP.Bytes;
                    CheckBranch(!VF, oper);
                    break;

                // BVS - branch on overflow set
                case 0x70:
                    PC += _currentOP.Bytes;
                    CheckBranch(VF, oper);
                    break;

                // CLC - clear carry flag
                case 0x18:
                    CF = false;
                    PC += _currentOP.Bytes;
                    break;

                // CLD - clear decimal mode
                case 0xd8:
                    DF = false;
                    PC += _currentOP.Bytes;
                    break;

                // CLI - clear interrupt disable bit
                case 0x58:
                    IF = false;
                    PC += _currentOP.Bytes;
                    break;

                // CLV - clear overflow flag
                case 0xb8:
                    VF = false;
                    PC += _currentOP.Bytes;
                    break;

                // CMP - compare memory with accumulator (NZC)
                // CMP, CPX and CPY are unsigned comparisions
                case 0xc5:
                case 0xc9:
                case 0xc1:
                case 0xcd:
                case 0xd1:
                case 0xd2:
                case 0xd5:
                case 0xd9:
                case 0xdd:

                    byte temp = (byte)(A - oper);

                    CF = A >= (byte)oper;
                    ZF = A == (byte)oper;
                    NF = ((temp & 0x80) == 0x80);

                    PC += _currentOP.Bytes;
                    break;

                // CPX - compare memory and X (NZC)
                case 0xe0:
                case 0xe4:
                case 0xec:
                    temp = (byte)(X - oper);

                    CF = X >= (byte)oper;
                    ZF = X == (byte)oper;
                    NF = ((temp & 0x80) == 0x80);

                    PC += _currentOP.Bytes;
                    break;

                // CPY - compare memory and Y (NZC)
                case 0xc0:
                case 0xc4:
                case 0xcc:
                    temp = (byte)(Y - oper);

                    CF = Y >= (byte)oper;
                    ZF = Y == (byte)oper;
                    NF = ((temp & 0x80) == 0x80);

                    PC += _currentOP.Bytes;
                    break;

                // DEC - decrement memory by 1 (NZ)
                case 0xc6:
                case 0xce:
                case 0xd6:
                case 0xde:
                // added by 65C02
                case 0x3a:
                    result = oper - 1;

                    ZF = ((result & 0xff) == 0x00);
                    NF = ((result & 0x80) == 0x80);

                    SaveOperand(_currentOP.AddressMode, result);

                    PC += _currentOP.Bytes;
                    break;

                // DEX - decrement X by one (NZ)
                case 0xca:
                    result = X - 1;

                    ZF = ((result & 0xff) == 0x00);
                    NF = ((result & 0x80) == 0x80);

                    X = (byte)result;
                    PC += _currentOP.Bytes;
                    break;

                // DEY - decrement Y by one (NZ)
                case 0x88:
                    result = Y - 1;

                    ZF = ((result & 0xff) == 0x00);
                    NF = ((result & 0x80) == 0x80);

                    Y = (byte)result;
                    PC += _currentOP.Bytes;
                    break;

                // EOR - XOR memory with accumulator (NZ)
                case 0x41:
                case 0x45:
                case 0x49:
                case 0x4d:
                case 0x51:
                case 0x52:
                case 0x55:
                case 0x59:
                case 0x5d:
                    result = A ^ (byte)oper;

                    ZF = ((result & 0xff) == 0x00);
                    NF = ((result & 0x80) == 0x80);

                    A = (byte)result;

                    PC += _currentOP.Bytes;
                    break;

                // INC - increment memory by 1 (NZ)
                case 0xe6:
                case 0xee:
                case 0xf6:
                case 0xfe:
                // added by 65C02
                case 0x1a:
                    result = oper + 1;

                    ZF = ((result & 0xff) == 0x00);
                    NF = ((result & 0x80) == 0x80);

                    SaveOperand(_currentOP.AddressMode, result);

                    PC += _currentOP.Bytes;
                    break;

                // INX - increment X by one (NZ)
                case 0xe8:
                    result = X + 1;

                    ZF = ((result & 0xff) == 0x00);
                    NF = ((result & 0x80) == 0x80);

                    X = (byte)result;
                    PC += _currentOP.Bytes;
                    break;

                // INY - increment Y by one (NZ)
                case 0xc8:
                    result = Y + 1;

                    ZF = ((result & 0xff) == 0x00);
                    NF = ((result & 0x80) == 0x80);

                    Y = (byte)result;
                    PC += _currentOP.Bytes;
                    break;

                // JMP - jump to new location (two byte immediate)
                case 0x4c:
                case 0x6c:
                // added for 65C02
                case 0x7c:

                    if (_currentOP.AddressMode == AddressModes.Absolute)
                    {
                        PC = GetImmWord();
                    }
                    else if (_currentOP.AddressMode == AddressModes.Indirect)
                    {
                        PC = (ushort)(GetWordFromMemory(GetImmWord()));
                    }
                    else if( _currentOP.AddressMode == AddressModes.AbsoluteX)
                    {
                        PC = GetWordFromMemory((GetImmWord() + X));
                    }
                    else
                    {
                        throw new InvalidOperationException("This address mode is invalid with the JMP instruction");
                    }

                    // CMOS fixes a bug in this op code which results in an extra clock cycle
                    if (_currentOP.OpCode == 0x6c && _cpuType == e6502Type.CMOS)
                        _extraCycles++;
                    break;

                // JSR - jump to new location and save return address
                case 0x20:
                    // documentation says push PC+2 even though this is a 3 byte instruction
                    // When pulled via RTS 1 is added to the result
                    Push((ushort)(PC+2));  
                    PC = GetImmWord();
                    break;

                // LDA - load accumulator with memory (NZ)
                case 0xa1:
                case 0xa5:
                case 0xa9:
                case 0xad:
                case 0xb1:
                case 0xb2:
                case 0xb5:
                case 0xb9:
                case 0xbd:
                    A = (byte)oper;

                    ZF = ((A & 0xff) == 0x00);
                    NF = ((A & 0x80) == 0x80);

                    PC += _currentOP.Bytes;
                    break;

                // LDX - load index X with memory (NZ)
                case 0xa2:
                case 0xa6:
                case 0xae:
                case 0xb6:
                case 0xbe:
                    X = (byte)oper;

                    ZF = ((X & 0xff) == 0x00);
                    NF = ((X & 0x80) == 0x80);

                    PC += _currentOP.Bytes;
                    break;

                // LDY - load index Y with memory (NZ)
                case 0xa0:
                case 0xa4:
                case 0xac:
                case 0xb4:
                case 0xbc:
                    Y = (byte)oper;

                    ZF = ((Y & 0xff) == 0x00);
                    NF = ((Y & 0x80) == 0x80);

                    PC += _currentOP.Bytes;
                    break;


                // LSR - shift right one bit (NZC)
                // 0 -> (76543210) -> C
                case 0x46:
                case 0x4a:
                case 0x4e:
                case 0x56:
                case 0x5e:

                    // On 65C02 (abs,X) takes one less clock cycle (but still add back 1 if page boundary crossed)
                    if (_currentOP.OpCode == 0x5e && _cpuType == e6502Type.CMOS)
                        _extraCycles--;

                    // shift bit 0 into carry
                    CF = ((oper & 0x01) == 0x01);

                    // shift operand
                    result = oper >> 1;

                    ZF = ((result & 0xff) == 0x00);
                    NF = ((result & 0x80) == 0x80);

                    SaveOperand(_currentOP.AddressMode, result);

                    PC += _currentOP.Bytes;
                    break;

                // NOP - no operation
                case 0xea:
                    PC += _currentOP.Bytes;
                    break;

                // ORA - OR memory with accumulator (NZ)
                case 0x01:
                case 0x05:
                case 0x09:
                case 0x0d:
                case 0x11:
                case 0x12:
                case 0x15:
                case 0x19:
                case 0x1d:
                    result = A | (byte)oper;

                    ZF = ((result & 0xff) == 0x00);
                    NF = ((result & 0x80) == 0x80);

                    A = (byte)result;

                    PC += _currentOP.Bytes;
                    break;

                // PHA - push accumulator on stack
                case 0x48:
                    Push(A);
                    PC += _currentOP.Bytes;
                    break;

                // PHP - push processor status on stack
                case 0x08:
                    int sr = 0x00;

                    if (NF) sr = sr | 0x80;
                    if (VF) sr = sr | 0x40;
                    sr = sr | 0x20; // bit 5 is always 1
                    sr = sr | 0x10; // bit 4 is always 1 for PHP
                    if (DF) sr = sr | 0x08;
                    if (IF) sr = sr | 0x04;
                    if (ZF) sr = sr | 0x02;
                    if (CF) sr = sr | 0x01;

                    Push((byte)sr);
                    PC += _currentOP.Bytes;
                    break;

                // PHX - push X on stack
                case 0xda:
                    Push(X);
                    PC += _currentOP.Bytes;
                    break;

                // PHY - push Y on stack
                case 0x5a:
                    Push(Y);
                    PC += _currentOP.Bytes;
                    break;

                // PLA - pull accumulator from stack (NZ)
                case 0x68:
                    A = PopByte();
                    NF = (A & 0x80) == 0x80;
                    ZF = (A & 0xff) == 0x00;
                    PC += _currentOP.Bytes;
                    break;

                // PLP - pull status from stack
                case 0x28:
                    sr = PopByte();

                    NF = (sr & 0x80) == 0x80;
                    VF = (sr & 0x40) == 0x40;
                    DF = (sr & 0x08) == 0x08;
                    IF = (sr & 0x04) == 0x04;
                    ZF = (sr & 0x02) == 0x02;
                    CF = (sr & 0x01) == 0x01;
                    PC += _currentOP.Bytes;
                    break;

                // PLX - pull X from stack (NZ)
                case 0xfa:
                    X = PopByte();
                    NF = (X & 0x80) == 0x80;
                    ZF = (X & 0xff) == 0x00;
                    PC += _currentOP.Bytes;
                    break;

                // PLY - pull Y from stack (NZ)
                case 0x7a:
                    Y = PopByte();
                    NF = (Y & 0x80) == 0x80;
                    ZF = (Y & 0xff) == 0x00;
                    PC += _currentOP.Bytes;
                    break;

                // RMBx - clear bit in memory (no flags)
                // Clear the zero page location of the specified bit
                // These instructions are only available on Rockwell and WDC 65C02 chips.
                case 0x07:
                case 0x17:
                case 0x27:
                case 0x37:
                case 0x47:
                case 0x57:
                case 0x67:
                case 0x77:

                    // upper nibble specifies the bit to check
                     check_bit = (byte)(_currentOP.OpCode >> 4);
                     check_value = 0x01;
                    for (int ii = 0; ii < check_bit; ii++)
                    {
                        check_value = (byte)(check_value << 1);
                    }
                    check_value = (byte)~check_value;
                    SaveOperand(_currentOP.AddressMode, oper & check_value);
                    PC += _currentOP.Bytes;
                    break;

                // SMBx - set bit in memory (no flags)
                // Set the zero page location of the specified bit
                // These instructions are only available on Rockwell and WDC 65C02 chips.
                case 0x87:
                case 0x97:
                case 0xa7:
                case 0xb7:
                case 0xc7:
                case 0xd7:
                case 0xe7:
                case 0xf7:

                    // upper nibble specifies the bit to check (but ignore bit 7)
                    check_bit = (byte)((_currentOP.OpCode & 0x70) >> 4);
                    check_value = 0x01;
                    for (int ii = 0; ii < check_bit; ii++)
                    {
                        check_value = (byte)(check_value << 1);
                    }
                    SaveOperand(_currentOP.AddressMode, oper | check_value);
                    PC += _currentOP.Bytes;
                    break;

                // ROL - rotate left one bit (NZC)
                // C <- 76543210 <- C
                case 0x26:
                case 0x2a:
                case 0x2e:
                case 0x36:
                case 0x3e:

                    // On 65C02 (abs,X) takes one less clock cycle (but still add back 1 if page boundary crossed)
                    if (_currentOP.OpCode == 0x3e && _cpuType == e6502Type.CMOS)
                        _extraCycles--;

                    // perserve existing cf value
                    bool old_cf = CF;

                    // shift bit 7 into carry flag
                    CF = (oper >= 0x80);

                    // shift operand
                    result = oper << 1;

                    // old carry flag goes to bit zero
                    if (old_cf) result = result | 0x01;

                    ZF = ((result & 0xff) == 0x00);
                    NF = ((result & 0x80) == 0x80);
                    SaveOperand(_currentOP.AddressMode, result);

                    PC += _currentOP.Bytes;
                    break;

                // ROR - rotate right one bit (NZC)
                // C -> 76543210 -> C
                case 0x66:
                case 0x6a:
                case 0x6e:
                case 0x76:
                case 0x7e:

                    // On 65C02 (abs,X) takes one less clock cycle (but still add back 1 if page boundary crossed)
                    if (_currentOP.OpCode == 0x7e && _cpuType == e6502Type.CMOS)
                        _extraCycles--;

                    // perserve existing cf value
                    old_cf = CF;

                    // shift bit 0 into carry flag
                    CF = (oper & 0x01) == 0x01;

                    // shift operand
                    result = oper >> 1;

                    // old carry flag goes to bit 7
                    if (old_cf) result = result | 0x80;

                    ZF = ((result & 0xff) == 0x00);
                    NF = ((result & 0x80) == 0x80);
                    SaveOperand(_currentOP.AddressMode, result);

                    PC += _currentOP.Bytes;
                    break;

                // RTI - return from interrupt
                case 0x40:
                    // pull SR
                    sr = PopByte();

                    NF = (sr & 0x80) == 0x80;
                    VF = (sr & 0x40) == 0x40;
                    DF = (sr & 0x08) == 0x08;
                    IF = (sr & 0x04) == 0x04;
                    ZF = (sr & 0x02) == 0x02;
                    CF = (sr & 0x01) == 0x01;

                    // pull PC
                    PC = PopWord();

                    break;

                // RTS - return from subroutine
                case 0x60:
                    PC = (ushort)(PopWord() + 1);
                    break;

                // SBC - subtract memory from accumulator with borrow (NZCV)
                // A-M-C -> A (NZCV)
                case 0xe1:
                case 0xe5:
                case 0xe9:
                case 0xed:
                case 0xf1:
                case 0xf2:
                case 0xf5:
                case 0xf9:
                case 0xfd:

                    if (DF)
                    {
                        result = HexToBCD(A) - HexToBCD((byte)oper);
                        if (!CF) result--;

                        CF = (result >= 0);

                        // BCD numbers wrap around when subtraction is negative
                        if (result < 0)
                            result += 100;
                        ZF = (result == 0);

                        A = BCDToHex(result);

                        // Unlike ZF and CF, the NF flag represents the MSB after conversion
                        // to BCD.
                        NF = (A > 0x7f);

                        // extra clock cycle on CMOS in decimal mode
                        if (_cpuType == e6502Type.CMOS)
                            _extraCycles++;
                    }
                    else
                    {
                        ADC((byte)~oper);
                    }
                    PC += _currentOP.Bytes;

                    break;

                // SEC - set carry flag
                case 0x38:
                    CF = true;
                    PC += _currentOP.Bytes;
                    break;

                // SED - set decimal mode
                case 0xf8:
                    DF = true;
                    PC += _currentOP.Bytes;
                    break;

                // SEI - set interrupt disable bit
                case 0x78:
                    IF = true;
                    PC += _currentOP.Bytes;
                    break;

                // STA - store accumulator in memory
                case 0x81:
                case 0x85:
                case 0x8d:
                case 0x91:
                case 0x92:
                case 0x95:
                case 0x99:
                case 0x9d:
                    SaveOperand(_currentOP.AddressMode, A);
                    PC += _currentOP.Bytes;
                    break;

                // STX - store X in memory
                case 0x86:
                case 0x8e:
                case 0x96:
                    SaveOperand(_currentOP.AddressMode, X);
                    PC += _currentOP.Bytes;
                    break;

                // STY - store Y in memory
                case 0x84:
                case 0x8c:
                case 0x94:
                    SaveOperand(_currentOP.AddressMode, Y);
                    PC += _currentOP.Bytes;
                    break;

                // STZ - Store zero
                case 0x64:
                case 0x74:
                case 0x9c:
                case 0x9e:
                    SaveOperand(_currentOP.AddressMode, 0);
                    PC += _currentOP.Bytes;
                    break;

                // TAX - transfer accumulator to X (NZ)
                case 0xaa:
                    X = A;
                    ZF = ((X & 0xff) == 0x00);
                    NF = ((X & 0x80) == 0x80);
                    PC += _currentOP.Bytes;
                    break;

                // TAY - transfer accumulator to Y (NZ)
                case 0xa8:
                    Y = A;
                    ZF = ((Y & 0xff) == 0x00);
                    NF = ((Y & 0x80) == 0x80);
                    PC += _currentOP.Bytes;
                    break;

                // TRB - test and reset bits (Z)
                // Perform bitwise AND between accumulator and contents of memory
                case 0x14:
                case 0x1c:
                    SaveOperand(_currentOP.AddressMode, ~A & oper);
                    ZF = (A & oper) == 0x00;
                    PC += _currentOP.Bytes;
                    break;

                // TSB - test and set bits (Z)
                // Perform bitwise AND between accumulator and contents of memory
                case 0x04:
                case 0x0c:
                    SaveOperand(_currentOP.AddressMode, A | oper);
                    ZF = (A & oper) == 0x00;
                    PC += _currentOP.Bytes;
                    break;

                // TSX - transfer SP to X (NZ)
                case 0xba:
                    X = SP;
                    ZF = ((X & 0xff) == 0x00);
                    NF = ((X & 0x80) == 0x80);
                    PC += _currentOP.Bytes;
                    break;

                // TXA - transfer X to A (NZ)
                case 0x8a:
                    A = X;
                    ZF = ((A & 0xff) == 0x00);
                    NF = ((A & 0x80) == 0x80);
                    PC += _currentOP.Bytes;
                    break;

                // TXS - transfer X to SP (no flags -- some online docs are incorrect)
                case 0x9a:
                    SP = X;
                    PC += _currentOP.Bytes;
                    break;

                // TYA - transfer Y to A (NZ)
                case 0x98:
                    A = Y;
                    ZF = ((A & 0xff) == 0x00);
                    NF = ((A & 0x80) == 0x80);
                    PC += _currentOP.Bytes;
                    break;

                // The original 6502 has undocumented and erratic behavior if
                // undocumented op codes are invoked.  The 65C02 on the other hand
                // are guaranteed to be NOPs although they vary in number of bytes
                // and cycle counts.  These NOPs are listed in the OpcodeList.txt file
                // so the proper number of clock cycles are used.
                //
                // Instructions STP (0xdb) and WAI (0xcb) will reach this case.
                // For now these are treated as a NOP.
                default:
                    PC += _currentOP.Bytes;
                    break;
            }
        }

        private int GetOperand(AddressModes mode)
        {
            int oper = 0;
            switch (mode)
            {
                // Accumulator mode uses the value in the accumulator
                case AddressModes.Accumulator:
                    oper = A;
                    break;

                // Retrieves the byte at the specified memory location
                case AddressModes.Absolute:             
                    oper = memory[ GetImmWord() ];
                    break;

                // Indexed absolute retrieves the byte at the specified memory location
                case AddressModes.AbsoluteX:

                    ushort imm = GetImmWord();
                    ushort result = (ushort)(imm + X);

                    if (_currentOP.CheckPageBoundary)
                    {
                        if ((imm & 0xff00) != (result & 0xff00)) _extraCycles += 1;
                    }
                    oper = memory[ result ];
                    break;
                case AddressModes.AbsoluteY:
                    imm = GetImmWord();
                    result = (ushort)(imm + Y);

                    if (_currentOP.CheckPageBoundary)
                    {
                        if ((imm & 0xff00) != (result & 0xff00)) _extraCycles += 1;
                    }
                    oper = memory[result]; break;

                // Immediate mode uses the next byte in the instruction directly.
                case AddressModes.Immediate:
                    oper = GetImmByte();
                    break;

                // Implied or Implicit are single byte instructions that do not use
                // the next bytes for the operand.
                case AddressModes.Implied:
                    break;

                // Indirect mode uses the absolute address to get another address.
                // The immediate word is a memory location from which to retrieve
                // the 16 bit operand.
                case AddressModes.Indirect:
                    oper = GetWordFromMemory(GetImmWord());
                    break;

                // The indexed indirect modes uses the immediate byte rather than the
                // immediate word to get the memory location from which to retrieve
                // the 16 bit operand.  This is a combination of ZeroPage indexed and Indirect.
                case AddressModes.XIndirect:

                    /*
                     * 1) fetch immediate byte
                     * 2) add X to the byte
                     * 3) obtain word from this zero page address
                     * 4) return the byte located at the address specified by the word
                     */

                    oper = memory[GetWordFromMemory( (byte)(GetImmByte() + X))];
                    break;

                // The Indirect Indexed works a bit differently than above.
                // The Y register is added *after* the deferencing instead of before.
                case AddressModes.IndirectY:

                    /*
                        1) Fetch the address (word) at the immediate zero page location
                        2) Add Y to obtain the final target address
                        3)Load the byte at this address
                    */

                    ushort addr = GetWordFromMemory(GetImmByte());
                    oper = memory[addr + Y];

                    if (_currentOP.CheckPageBoundary)
                    {
                        if ((oper & 0xff00) != (addr & 0xff00)) _extraCycles++;
                    }
                    break;


                // Relative is used for branching, the immediate value is a
                // signed 8 bit value and used to offset the current PC.
                case AddressModes.Relative:
                    oper = SignExtend(GetImmByte());
                    break;

                // Zero Page mode is a fast way of accessing the first 256 bytes of memory.
                // Best programming practice is to place your variables in 0x00-0xff.
                // Retrieve the byte at the indicated memory location.
                case AddressModes.ZeroPage:
                    oper = memory[GetImmByte()];
                    break;
                case AddressModes.ZeroPageX:
                    oper = memory[(GetImmByte() + X) & 0xff];
                    break;
                case AddressModes.ZeroPageY:
                    oper = memory[(GetImmByte() + Y) & 0xff];
                    break;

                // this mode is from the 65C02 extended set
                // works like ZeroPageY when Y=0
                case AddressModes.ZeroPage0:
                    oper = memory[GetWordFromMemory((GetImmByte()) & 0xff)];
                    break;

                // for this mode do the same thing as ZeroPage
                case AddressModes.BranchExt:
                    oper = memory[GetImmByte()];
                    break;
                default:
                    break;
            }
            return oper;
        }

        private void SaveOperand(AddressModes mode, int data)
        {
            switch (mode)
            {
                // Accumulator mode uses the value in the accumulator
                case AddressModes.Accumulator:
                    A = (byte)data;
                    break;

                // Absolute mode retrieves the byte at the indicated memory location
                case AddressModes.Absolute:
                    memory[GetImmWord()] = (byte)data;
                    break;
                case AddressModes.AbsoluteX:
                    memory[GetImmWord() + X] = (byte)data;
                    break;
                case AddressModes.AbsoluteY:
                    memory[GetImmWord() + Y] = (byte)data;
                    break;

                // Immediate mode uses the next byte in the instruction directly.
                case AddressModes.Immediate:
                    throw new InvalidOperationException("Address mode " + mode.ToString() + " is not valid for this operation");

                // Implied or Implicit are single byte instructions that do not use
                // the next bytes for the operand.
                case AddressModes.Implied:
                    throw new InvalidOperationException("Address mode " + mode.ToString() + " is not valid for this operation");

                // Indirect mode uses the absolute address to get another address.
                // The immediate word is a memory location from which to retrieve
                // the 16 bit operand.
                case AddressModes.Indirect:
                    throw new InvalidOperationException("Address mode " + mode.ToString() + " is not valid for this operation");

                // The indexed indirect modes uses the immediate byte rather than the
                // immediate word to get the memory location from which to retrieve
                // the 16 bit operand.  This is a combination of ZeroPage indexed and Indirect.
                case AddressModes.XIndirect:
                    memory[GetWordFromMemory((byte)(GetImmByte() + X))] = (byte)data;
                    break;

                // The Indirect Indexed works a bit differently than above.
                // The Y register is added *after* the deferencing instead of before.
                case AddressModes.IndirectY:
                    memory[GetWordFromMemory(GetImmByte()) + Y] = (byte)data;
                    break;

                // Relative is used for branching, the immediate value is a
                // signed 8 bit value and used to offset the current PC.
                case AddressModes.Relative:
                    throw new InvalidOperationException("Address mode " + mode.ToString() + " is not valid for this operation");

                // Zero Page mode is a fast way of accessing the first 256 bytes of memory.
                // Best programming practice is to place your variables in 0x00-0xff.
                // Retrieve the byte at the indicated memory location.
                case AddressModes.ZeroPage:
                    memory[GetImmByte()] = (byte)data;
                    break;
                case AddressModes.ZeroPageX:
                    memory[(GetImmByte() + X) & 0xff] = (byte)data;
                    break;
                case AddressModes.ZeroPageY:
                    memory[(GetImmByte() + Y) & 0xff] = (byte)data;
                    break;
                case AddressModes.ZeroPage0:
                    memory[GetWordFromMemory((GetImmByte()) & 0xff)] = (byte)data;
                    break;

                // for this mode do the same thing as ZeroPage
                case AddressModes.BranchExt:
                    memory[GetImmByte()] = (byte)data;
                    break;

                default:
                    break;
            }
        }

        private ushort GetWordFromMemory(int address)
        {
            return (ushort)((memory[address + 1] << 8 | memory[address]) & 0xffff);
        }

        private ushort GetImmWord()
        {
            return (ushort)((memory[PC + 2] << 8 | memory[PC + 1]) & 0xffff);
        }

        private byte GetImmByte()
        {
            return memory[PC + 1];
        }

        private int SignExtend(int num)
        {
            if (num < 0x80)
                return num;
            else
                return (0xff << 8 | num) & 0xffff;
        }

        private void Push(byte data)
        {
            memory[(0x0100 | SP)] = data;
            SP--;
        }

        private void Push(ushort data)
        {
            // HI byte is in a higher address, LO byte is in the lower address
            memory[(0x0100 | SP)] = (byte)(data >> 8);
            memory[(0x0100 | (SP-1))] = (byte)(data & 0xff);
            SP -= 2;
        }

        private byte PopByte()
        {
            SP++;
            return memory[(0x0100 | SP)];
        }

        private ushort PopWord()
        {
            // HI byte is in a higher address, LO byte is in the lower address
            SP += 2;
            ushort idx = (ushort)(0x0100 | SP);
            return (ushort)((memory[idx] << 8 | memory[idx-1]) & 0xffff);
        }

        private void ADC(byte oper)
        {
            ushort answer = (ushort)(A + oper);
            if (CF) answer++;

            CF = (answer > 0xff);
            ZF = ((answer & 0xff) == 0x00);
            NF = (answer & 0x80) == 0x80;

            //ushort temp = (ushort)(~(A ^ oper) & (A ^ answer) & 0x80);
            VF = (~(A ^ oper) & (A ^ answer) & 0x80) != 0x00;

            A = (byte)answer;
        }

        private int HexToBCD(byte oper)
        {
            // validate input is valid packed BCD 
            if (oper > 0x99)
                throw new InvalidOperationException("Invalid BCD number: " + oper.ToString("X2"));
            if ((oper & 0x0f) > 0x09)
                throw new InvalidOperationException("Invalid BCD number: " + oper.ToString("X2"));

            return ((oper >> 4) * 10) + (oper & 0x0f);
        }

        private byte BCDToHex(int result)
        {
            if (result > 0xff)
                throw new InvalidOperationException("Invalid BCD to hex number: " + result.ToString());

            if (result <= 9)
                return (byte)result;
            else
                return (byte)(((result / 10) << 4) + (result % 10));

        }

        private void DoIRQ(ushort vector)
        {
            DoIRQ(vector, false);
        }

        private void DoIRQ(ushort vector, bool isBRK)
        {
            // Push the MSB of the PC
            Push((byte)(PC >> 8));

            // Push the LSB of the PC
            Push((byte)(PC & 0xff));

            // Push the status register
            int sr = 0x00;
            if (NF) sr = sr | 0x80;
            if (VF) sr = sr | 0x40;

            sr = sr | 0x20;             // bit 5 is unused and always 1

            if(isBRK)
                sr = sr | 0x10;         // software interrupt (BRK) pushes B flag as 1
                                        // hardware interrupt pushes B flag as 0
            if (DF) sr = sr | 0x08;
            if (IF) sr = sr | 0x04;
            if (ZF) sr = sr | 0x02;
            if (CF) sr = sr | 0x01;

            Push((byte)sr);

            // set interrupt disable flag
            IF = true;

            // On 65C02, IRQ, NMI, and RESET also clear the D flag (but not on BRK) after pushing the status register.
            if (_cpuType == e6502Type.CMOS && !isBRK)
                DF = false;

            // load program counter with the interrupt vector
            PC = GetWordFromMemory(vector);
        }

        private void CheckBranch(bool flag, int oper)
        {
            if (flag)
            {
                // extra cycle on branch taken
                _extraCycles++;

                // extra cycle if branch destination is a different page than
                // the next instruction
                if ((PC & 0xff00) != ((PC + oper) & 0xff00))
                    _extraCycles++;

                PC += (ushort)oper;
            }

        }
    }
}

Ninguém lhe deu as boas-vindas ao PPCG, acho que vou aproveitar essa chance. Esta é uma ótima primeira resposta e espero vê-lo com mais frequência. Diverta-se!
Stan Strum

Obrigado @StanStrum! Foi um post do SE, anos atrás, sobre um emulador 8086 que me interessou em emular e aprender como esses dispositivos realmente funcionavam. Tem sido muito divertido. Além do exposto, eu tenho um emulador 8080 completo e um emulador 8086, que é feito em cerca de 90%.
Adam Mensch

Isso é incrível, estou interessado em criar um emulador e / ou uma linguagem de programação de nível médio, mas não tenho tempo, paciência ou inteligência para fazê-lo
Stan Strum
Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.