Recentemente, eu tenho jogado um jogo chamado Alcazar. É um jogo de tabuleiro onde seu objetivo é entrar por uma porta, passar por todos os quadrados e sair por outra porta. As únicas regras são:
- Entre uma vez, saia uma vez;
- Passe por todos os quadrados;
- Não passe por um quadrado mais de uma vez
A imagem abaixo mostra um exemplo de um quadro do Alcazar e, à direita, o quebra-cabeça resolvido (é claro que é fácil):
Você pode encontrar mais quebra-cabeças em http://www.theincrediblecompany.com/try-alcazar e baixar o jogo na PlayStore (PS: Não é um anúncio).
Meu problema é que quase terminei o jogo, exceto um nível. Simplesmente não consigo encontrar uma maneira de resolvê-lo. Portanto, o desafio que proponho é: criar um algoritmo que resolva qualquer nível normal de 1 Alcazar 2 solucionável .
Obviamente, não estou pedindo a ninguém que construa um intérprete de imagem para ler a imagem e resolver o quebra-cabeça (ou estou?). Então desenhei o quebra-cabeça acima usando caracteres de desenho de caixa. O quebra-cabeça e sua solução seriam assim:
╔═══════╗ ╔═══════╗
║▒ ▒ ▒ ▒║ ║┌─┐ ┌─┐║
║ ║ ║ ║│ │ │║│║
╣▒ ▒ ▒║▒╠ ╣│ └─┘║└╠
║ ══╦═╩═╣ ║│══╦═╩═╣
║▒ ▒║▒ ▒║ ║└─┐║┌─┐║
║ ║ ║ ==> ║ │║│ │║
╣▒ ▒║▒ ▒║ ╣┐ │║│ │║
║ ║ ║ ║ ║│║│║│ │║
╣▒║▒ ▒ ▒║ ╣│║└─┘ │║
║ ║ ║ ║│║ │║
║▒ ▒ ▒ ▒║ ║└─────┘║
╚═══════╝ ╚═══════╝
No quadro acima, ▒
estão as células a serem preenchidas.
Pode-se observar que existe um gabarito vertical e horizontal entre as células. Isso ocorre porque eu tive que inserir um espaço entre as células para adicionar as paredes. Isso significa que as únicas células importantes são as acima, abaixo, à esquerda e à direita de cada célula. As diagonais podem ser removidas sem perda de informações. Por exemplo, no quadro abaixo, ambos representam o mesmo quebra-cabeça:
╔════╩╗ ═ ═ ╩
║▒ ▒ ▒║ ║▒ ▒ ▒║
║ ═══ ║ ═
║▒ ▒ ▒║ == ║▒ ▒ ▒║
║ ║
║▒ ▒ ▒║ ║▒ ▒ ▒║
╚╦════╝ ╦═ ══
Isso também é válido para as soluções. Ou seja, não é necessário conectar as células:
╔════╩╗ ╔════╩╗ ╔════╩╗
║▒ ▒ ▒║ ║┌───┘║ ║┌ ─ ┘║
║ ═══ ║ ║│═══ ║ ║ ═══ ║
║▒ ▒ ▒║ == ║└───┐║ => ║└ ─ ┐║
║ ║ ║ │║ ║ ║
║▒ ▒ ▒║ ║┌───┘║ ║┌ ─ ┘║
╚╦════╝ ╚╦════╝ ╚╦════╝
No exemplo acima, ambas as soluções significam o mesmo.
Sim, os casos de teste. Aqui estão eles:
Quebra-cabeça 1
╔════╩╗ ╔════╩╗
║▒ ▒ ▒║ ║┌ ─ ┘║
║ ═══ ║ ║ ═══ ║
║▒ ▒ ▒║ => ║└ ─ ┐║
║ ║ ║ ║
║▒ ▒ ▒║ ║┌ ─ ┘║
╚╦════╝ ╚╦════╝
Puzzle 2
╔═════╗ ╔═════╗
║▒ ▒ ▒║ ║┌ ─ ┐║
║ ║ ║ ║ ║ ║
╣▒ ▒║▒║ ╣└ ┐║│║
║ ║ ║ ║ => ║ ║ ║ ║
╣▒║▒ ▒╠ ╣┐║│ │╠
║ ║ ║ ║ ║ ║
║▒ ▒ ▒║ ║└ ┘ │║
╚════╦╝ ╚════╦╝
Puzzle 3
╔════╩══╗ ╔════╩══╗
║▒ ▒ ▒ ▒║ ║┌ ┐ └ ┐║
║ ║ ║ ║ ║ ║ ║ ║
╣▒║▒ ▒║▒╠ ╣┘║└ ┐║│╠
║ ╚══ ║ ║ ║ ╚══ ║ ║
║▒ ▒ ▒ ▒╠ => ║┌ ─ ┘ │╠
║ ═══ ║ ║ ═══ ║
║▒ ▒ ▒ ▒║ ║│ ┌ ┐ │║
║ ║ ║ ║ ║ ║
║▒ ▒║▒ ▒║ ║└ ┘║└ ┘║
╚═══╩═══╝ ╚═══╩═══╝
quebra-cabeça 4
╔═══════╗ ╔═══════╗
║▒ ▒ ▒ ▒║ ║┌ ┐ ┌ ┐║
║ ║ ║ ║ ║ ║
╣▒ ▒ ▒║▒╠ ╣│ └ ┘║└╠
║ ══╦═╩═╣ ║ ══╦═╩═╣
║▒ ▒║▒ ▒║ ║└ ┐║┌ ┐║
║ ║ ║ => ║ ║ ║
╣▒ ▒║▒ ▒║ ╣┐ │║│ │║
║ ║ ║ ║ ║ ║ ║ ║
╣▒║▒ ▒ ▒║ ╣│║└ ┘ │║
║ ║ ║ ║ ║ ║
║▒ ▒ ▒ ▒║ ║└ ─ ─ ┘║
╚═══════╝ ╚═══════╝
Quebra-cabeça 5
╔══╩══════╗ ╔══╩══════╗
║▒ ▒ ▒ ▒ ▒║ ║┌ ─ ┐ ┌ ┐║
║ ║ ║ ║ ║ ║
║▒ ▒║▒ ▒ ▒╠ ║└ ┐║└ ┘ │╠
║ ╠════ ║ ║ ╠════ ║
║▒ ▒║▒ ▒ ▒║ => ║┌ ┘║┌ ─ ┘║
║ ║ ║ ║ ║ ║
║▒ ▒║▒ ▒ ▒╠ ║└ ┐║└ ─ ─╠
║ ╠═════╣ ║ ╠═════╣
║▒ ▒║▒ ▒ ▒║ ║┌ ┘║┌ ─ ┐║
║ ║ ║ ║ ║ ║
║▒ ▒ ▒ ▒ ▒║ ║└ ─ ┘ ┌ ┘║
╚══╦═══╦══╝ ╚══╦═══╦══╝
Puzzle 6
╔═══════════╗ ╔═══════════╗
║▒ ▒ ▒ ▒ ▒ ▒║ ║┌ ┐ ┌ ┐ ┌ ┐║
║ ║ ║ ║
║▒ ▒ ▒ ▒ ▒ ▒║ ║│ └ ┘ └ ┘ │║
║ ═══ ║ ║ ═══ ║
║▒ ▒ ▒ ▒ ▒ ▒║ ║└ ┐ ┌ ─ ─ ┘║
║ ═══ ║ ║ ═══ ║
╣▒ ▒ ▒ ▒ ▒ ▒╠ => ╣┐ │ │ ┌ ┐ ┌╠
║ ║ ║ ║
║▒ ▒ ▒ ▒ ▒ ▒║ ║│ │ │ │ │ │║
║ ║ ║ ║ ║ ║ ║ ║
║▒ ▒║▒ ▒║▒ ▒║ ║│ │║│ │║│ │║
║ ║ ║ ║ ║ ║ ║ ║
║▒ ▒ ▒ ▒ ▒ ▒║ ║└ ┘ └ ┘ └ ┘║
╚═══════════╝ ╚═══════════╝
Quebra-cabeça 7
╔════╩════════╦╩╗ ╔════╩════════╦╩╗
║▒ ▒ ▒ ▒ ▒ ▒ ▒║▒║ ║┌ ─ ─ ─ ─ ─ ┐║│║
║ ║ ║ ║ ║ ║ ║ ║ ║ ║
║▒║▒ ▒ ▒ ▒║▒ ▒ ▒║ ║│║┌ ─ ─ ┐║┌ ┘ │║
║ ║ ║ ═══ ║ ║ ║ ║ ║ ═══ ║ ║
║▒ ▒║▒ ▒ ▒ ▒ ▒ ▒╠ ║│ │║┌ ─ ┘ └ ┐ │╠
║ ║ ║ ║ ║ ║
║▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒║ ║│ │ └ ┐ ┌ ┐ └ ┘║
║ ║ ║ ══╣ ║ ║ ║ ══╣
║▒ ▒ ▒║▒║▒ ▒ ▒ ▒║ ║│ └ ┐║│║│ └ ─ ┐║
║ ║ ║ ║ ║ ║ ║ ║
║▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒║ ║│ ┌ ┘ │ └ ┐ ┌ ┘║
║ ║ ══╣ => ║ ║ ══╣
║▒ ▒ ▒ ▒ ▒ ▒║▒ ▒║ ║└ ┘ ┌ ┘ ┌ ┘║└ ┐║
╠══ ║ ╚══ ║ ╠══ ║ ╚══ ║
║▒ ▒ ▒ ▒ ▒║▒ ▒ ▒║ ║┌ ┐ └ ┐ │║┌ ─ ┘║
║ ║ ║ ║ ║ ║ ║ ║ ║ ║
║▒ ▒ ▒║▒║▒ ▒ ▒ ▒║ ║│ └ ┐║│║│ └ ─ ┐║
║ ║ ║ ║ ╔══ ║ ║ ║ ║ ║ ╔══ ║
║▒║▒ ▒ ▒ ▒║▒ ▒ ▒║ ║│║┌ ┘ │ │║┌ ┐ │║
║ ║ ║ ║ ║ ║ ║ ║ ║ ║
║▒ ▒ ▒ ▒║▒ ▒ ▒ ▒║ ║│ └ ─ ┘║└ ┘ │ │║
║ ╚══ ║ ║ ╚══ ║
║▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒║ ║└ ─ ─ ─ ─ ─ ┘ │║
╚════╦═╦═╦═════╦╝ ╚════╦═╦═╦═════╦╝
Quebra-cabeça 8 (Desculpe, eu realmente não tenho a solução para este)
╔══╩╦══╩═══╩═╩═╩═══╩╗
║▒ ▒║▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒║
║ ║ ║
╣▒ ▒║▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒║
║ ╚══ ╔══ ╔═══╣
╣▒ ▒ ▒ ▒║▒ ▒ ▒ ▒║▒ ▒╠
║ ║ ╔══ ║ ║
╣▒ ▒ ▒ ▒ ▒ ▒║▒ ▒ ▒ ▒╠
║ ║ ║
║▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒╠
║ ║ ║
╣▒ ▒ ▒ ▒ ▒ ▒║▒ ▒ ▒ ▒╠
║ ╔═══╗ ╚══ ║
╣▒ ▒║▒ ▒║▒ ▒ ▒ ▒ ▒ ▒║
║ ║ ║ ║
╣▒ ▒║▒ ▒║▒ ▒ ▒ ▒ ▒ ▒╠
║ ══╝ ║ ╔══ ║
║▒ ▒ ▒ ▒║▒ ▒ ▒ ▒║▒ ▒║
║ ══╗ ╚══ ╔══ ║ ║
╣▒ ▒ ▒║▒ ▒ ▒║▒ ▒ ▒ ▒╠
║ ║ ║ ║ ║
╣▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒║▒ ▒║
║ ═══ ══╗ ║ ║
╣▒ ▒ ▒ ▒ ▒ ▒║▒ ▒ ▒ ▒╠
╠══ ║ ║ ╔══ ║
║▒ ▒║▒ ▒ ▒ ▒ ▒ ▒║▒ ▒╠
║ ╚══ ║ ║ ║ ║
╣▒ ▒ ▒ ▒║▒ ▒║▒ ▒ ▒ ▒╠
║ ║ ║ ║
║▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒║
╚══╦═══╦═══╦═╦═╦═╦═╦╝
Entrada
A entrada do seu código pode ter qualquer representação, desde que siga estas regras:
Deve ser uma entrada gráfica. Portanto, não é possível ler uma lista de coordenadas, por exemplo.
Paredes horizontais, paredes verticais e portas devem ser distintas e devem ser feitas de um caractere visível (sem caracteres em branco).
O
▒
pode ser substituído por espaços em branco. Eu apenas usei um personagem diferente para destacá-los.
Saída
A saída também pode ter qualquer representação, desde que siga estas regras:
Deve ser uma saída gráfica. Ou seja, pode-se ver o caminho olhando para ele.
A regra número um implica que os caracteres do caminho sejam diferentes. Ou seja, haverá pelo menos 6 caracteres de caminho; horizontal, vertical e cantos.
Para que a resposta seja válida, a saída deve ser a mesma placa que a entrada (obviamente) com todas as células (na minha representação, as
▒
) preenchidas. Preencher as lacunas entre as células é opcional.
Pontuação
Isso é código-golfe , então o código mais curto em bytes vence.
1 Existem alguns níveis do Alcazar que possuem células e túneis opcionais. Estes não serão considerados.
2 Existem alguns painéis do Alcazar que são impossíveis.