(-a) × (-a) = a × a


121

Todos sabemos que (espero), mas você pode provar isso?(a)×(a)=a×a

Sua tarefa é provar esse fato usando os axiomas do anel. Quais são os axiomas do anel? Os axiomas em anel são uma lista de regras que duas operações binárias em um conjunto devem seguir. As duas operações são adição, e multiplicação, . Para este desafio, aqui estão os axiomas do anel em que e são operações binárias fechadas em algum conjunto , é uma operação unária fechada em , e , , são membros de :+×+×SSabcS

  1. a+(b+c)=(a+b)+c

  2. a+0=a

  3. a+(a)=0

  4. a+b=b+a *

  5. a×(b×c)=(a×b)×c

  6. a×1=a

  7. 1×a=a

  8. a×(b+c)=(a×b)+(a×c)

  9. (b+c)×a=(b×a)+(c×a)

Sua prova deve ser uma série de igualdades, cada uma sendo a aplicação de um axioma.

Você pode aplicar os axiomas à expressão inteira ou a alguma subexpressão. Por exemplo, se tivermos , podemos aplicar o Axioma 4 apenas ao termo , ao termo ou à expressão inteira como um todo. As variáveis ​​também podem substituir expressões arbitrariamente complexas, por exemplo, podemos aplicar o axioma 4 a para obter . Em cada etapa da prova, você pode aplicar apenas um axioma a uma expressão. Todos os axiomas são bidirecionais, o que significa que a substituição pode ir em qualquer direção. Coisas como as seguintes não são permitidas(a+c)+(b+c)(b+c)(a+c)((a×c)+b)+((a)+1)((a)+1)+((a×c)+b)

(a + b) + (c + d) = (a + (b + c)) + d Ax. 1

Isso deve ser feito em duas etapas:

(a + b) + (c + d) = ((a + b) + c) + d Ax. 1
                  = (a + (b + c)) + d Ax. 1

Os fatos que você normalmente considera óbvios, mas não estão listados na lista de axiomas, não podem ser assumidos , por exemplo é verdadeiro, mas requer várias etapas para a pré-forma.(a)=(1)×a

O usuário Anthony gentilmente forneceu um validador de prova on-line que pode ser usado como um substituto para o TIO.

Prova de exemplo

Aqui está um exemplo de prova de que com os axiomas usados ​​rotulados à direita de cada etapa.(a)=a

 -(-a) = (-(-a)) + 0          Ax. 2
       = 0 + (-(-a))          Ax. 4
       = (a + (-a)) + (-(-a)) Ax. 3
       = a + ((-a) + (-(-a))) Ax. 1
       = a + 0                Ax. 3
       = a                    Ax. 2

Experimente online!

Você terá a tarefa de provar usando sucessivas substituições como a mostrada acima.(a)×(a)=a×a

Pontuação

Isso é portanto, suas respostas serão pontuadas no número de etapas necessárias para ir de a , com uma pontuação menor sendo melhor.(a)×(a)a×a

Lemas

Algumas respostas optaram por usar lemas em suas provas, então descreverei como isso deve ser pontuado para evitar qualquer confusão. Para os não iniciados, os lemas são provas de fatos que você usa posteriormente na prova. Na matemática real, eles podem ser úteis para organizar seus pensamentos ou transmitir informações claramente ao leitor. Nesse desafio, o uso de lemas não deve afetar diretamente sua pontuação. (Embora a organização da prova possa facilitar ou dificultar o golfe)

Se você optar por usar os lemas, custará o número de etapas necessárias para provar esse lema em primeiro lugar cada vez que você o usar. Por exemplo, aqui está o detalhamento da pontuação de uma prova usando lemas.

Lemma:
a × 0 = 0

Proof (7 steps):
a × 0 = (a × 0) + 0                        Ax. 2 (1)
      = (a × 0) + ((a × b) + (-(a × b)))   Ax. 3 (1)
      = ((a × 0) + (a × b)) + (-(a × b))   Ax. 1 (1)
      = (a × (0 + b)) + (-(a × b))         Ax. 8 (1)
      = (a × (b + 0)) + (-(a × b))         Ax. 4 (1)
      = (a × b) + (-(a × b))               Ax. 2 (1)
      = 0                                  Ax. 3 (1)

Theorem:
(a × 0) + (b × 0) = 0

Proof (15 steps):
(a × 0) + (b × 0) = 0 + (b × 0)  Lemma (7)
                  = (b × 0) + 0  Ax. 4 (1)
                  = b × 0        Ax. 2 (1)
                  = 0            Lemma (7)

*: Foi apontado que este axioma não é estritamente necessário para provar essa propriedade, mas você ainda pode usá-lo.

†: Como não aparece na igualdade desejada, qualquer prova que use esses axiomas não é mínima. Ou seja, esses axiomas não podem ajudar a provar o fato desejado. Eles foram incluídos apenas por uma questão de integridade.1


8
Um programa que escrevemos deveria resolver isso ou apenas imprimir a resposta?
Tahg 26/09

8
@Tahg Você deveria provar isso e enviar sua prova como resposta. Isso é diferente da maioria dos problemas (se não todos) que você verá aqui.
HyperNeutrino

8
Fiquei frustrantemente próximo antes de perceber que um * 0 = 0 não está na lista de axiomas.
21717 Sparr

8
Erm ... Eu posso estar errado, mas não é assim fora de tópico? As respostas não devem conter código?
totallyhuman

35
@icrieverytim, se ajudar, pense na lista de axiomas como uma linguagem de programação com nove funções internas de substituição de parâmetros, e este é um código de golfe para uma função que transforma uma entrada específica em uma saída específica.
Sparr

Respostas:


47

18 Passos

(-a)*(-a) = ((-a)*(-a))+0                                             Axiom 2
          = ((-a)*(-a))+(((a*a)+(a*(-a)))+(-((a*a)+(a*(-a)))))        Axiom 3
          = (((-a)*(-a))+((a*a)+(a*(-a))))+(-((a*a)+(a*(-a))))        Axiom 1
          = (((a*a)+(a*(-a)))+((-a)*(-a)))+(-((a*a)+(a*(-a))))        Axiom 4
          = ((a*a)+((a*(-a))+((-a)*(-a))))+(-((a*a)+(a*(-a))))        Axiom 1
          = ((a*a)+((a+(-a))*(-a)))+(-((a*a)+(a*(-a))))               Axiom 9
          = ((a*a)+(0*(-a)))+(-((a*a)+(a*(-a))))                      Axiom 3
          = ((a*(a+0))+(0*(-a)))+(-((a*a)+(a*(-a))))                  Axiom 2
          = ((a*(a+(a+(-a))))+(0*(-a)))+(-((a*a)+(a*(-a))))           Axiom 3
          = (((a*a)+(a*(a+(-a))))+(0*(-a)))+(-((a*a)+(a*(-a))))       Axiom 8
          = ((a*a)+((a*(a+(-a)))+(0*(-a))))+(-((a*a)+(a*(-a))))       Axiom 1
          = (a*a)+(((a*(a+(-a)))+(0*(-a)))+(-((a*a)+(a*(-a)))))       Axiom 1
          = (a*a)+((((a*a)+(a*(-a)))+(0*(-a)))+(-((a*a)+(a*(-a)))))   Axiom 8
          = (a*a)+(((a*a)+((a*(-a))+(0*(-a))))+(-((a*a)+(a*(-a)))))   Axiom 1
          = (a*a)+(((a*a)+((a+0)*(-a)))+(-((a*a)+(a*(-a)))))          Axiom 9
          = (a*a)+(((a*a)+(a*(-a)))+(-((a*a)+(a*(-a)))))              Axiom 2
          = (a*a)+0                                                   Axiom 3
          = a*a                                                       Axiom 2

Eu escrevi um programa para verificar minha solução. Portanto, se você encontrar um erro nisso, meu programa também está errado.


@ Ettoplay Por curiosidade, você escreveu seu programa em Prolog?
Jalil Compaoré

23
Seria ótimo se você pudesse incluir seu programa. Certamente poderia ajudar a verificar outras soluções.
Sriotchilism O'Zaic

2
Como você passou da primeira linha para a segunda apenas aplicando um axioma uma vez?
SztupY

4
@SztupY Axiom 3 é v + (-v) = 0deixar v = ((a*a)+(a*(-a))e chegar lá em 1 etapa.
MT0 28/09


29

18 passos

Diferente da solução de 18 etapas já publicada.

a*a = a*a + 0                                                 A2
    = a*a + ((a*(-a) + a*(-a)) + (-(a*(-a) + a*(-a))))        A3
    = (a*a + (a*(-a) + a*(-a))) + (-(a*(-a) + a*(-a)))        A1
    = (a*a + a*((-a) + (-a))) + (-(a*(-a) + a*(-a)))          A8
    = a*(a + ((-a) + (-a))) + (-(a*(-a) + a*(-a)))            A8
    = a*((a + (-a)) + (-a)) + (-(a*(-a) + a*(-a)))            A1
    = a*(0 + (-a)) + (-(a*(-a) + a*(-a)))                     A3
    = a*((-a) + 0) + (-(a*(-a) + a*(-a)))                     A4
    = a*(-a) + (-(a*(-a) + a*(-a)))                           A2
    = (a + 0)*(-a) + (-(a*(-a) + a*(-a)))                     A2
    = (a + (a + (-a)))*(-a) + (-(a*(-a) + a*(-a)))            A3
    = ((a + a) + (-a))*(-a) + (-(a*(-a) + a*(-a)))            A1
    = ((-a) + (a + a))*(-a) + (-(a*(-a) + a*(-a)))            A4
    = ((-a)*(-a) + (a + a)*(-a)) + (-(a*(-a) + a*(-a)))       A9
    = ((-a)*(-a) + (a*(-a) + a*(-a))) + (-(a*(-a) + a*(-a)))  A9
    = (-a)*(-a) + ((a*(-a) + a*(-a)) + (-(a*(-a) + a*(-a))))  A1
    = (-a)*(-a) + 0                                           A3
    = (-a)*(-a)                                               A2

Interessante ver alguém fazer isso ao contrário. Todas as etapas são reversíveis, portanto, é uma boa prova.
Sriotchilism O'Zaic

O fato de ficar de cabeça para baixo é quase sempre acidental. A prova é na verdade bastante simétrica: eu uso duas seqüências de etapas semelhantes para ir de um extremo ao outro a*(-a) + stuff.
Emil Jeřábek


28

29 26 Passos

Sem lemas!

Comente se você vê algo errado. (É muito fácil cometer um erro)

(-a) × (-a) = ((-a) + 0) × (-a)                                                  Ax. 2
            = ((-a) + (a + (-a))) × (-a)                                         Ax. 3
            = ((a + (-a)) + (-a)) × (-a)                                         Ax. 4
            = (a + ((-a) + (-a))) × (-a)                                         Ax. 1
            = (a × (-a)) + (((-a) + (-a)) × (-a))                                Ax. 9
            = (a × ((-a) + 0)) + (((-a) + (-a)) × (-a))                          Ax. 2
            = (a × ((-a) + (a + (-a)))) + (((-a) + (-a)) × (-a))                 Ax. 3
            = (a × ((a + (-a)) + (-a))) + (((-a) + (-a)) × (-a))                 Ax. 4
            = (a × (a + ((-a) + (-a)))) + (((-a) + (-a)) × (-a))                 Ax. 1
            = ((a × a) + (a × ((-a) + (-a)))) + (((-a) + (-a)) × (-a))           Ax. 8
            = (a × a) + ((a × ((-a) + (-a))) + (((-a) + (-a)) × (-a)))           Ax. 1
            = (a × a) + (((a × (-a)) + (a × (-a))) + (((-a) + (-a)) × (-a)))     Ax. 8
            = (a × a) + (((a + a) × (-a)) + (((-a) + (-a)) × (-a)))              Ax. 9
            = (a × a) + (((a + a) + ((-a) + (-a))) × (-a))                       Ax. 9
            = (a × a) + ((((a + a) + (-a)) + (-a)) × (-a))                       Ax. 1
            = (a × a) + (((a + (a + (-a))) + (-a)) × (-a))                       Ax. 1
            = (a × a) + (((a + 0) + (-a)) × (-a))                                Ax. 3
            = (a × a) + ((a + (-a)) × (-a))                                      Ax. 2
            = (a × a) + (0 × (-a))                                               Ax. 3
            = (a × a) + ((0 × (-a)) + 0)                                         Ax. 2
            = (a × a) + ((0 × (-a)) + ((0 × (-a)) + (-(0 × (-a)))))              Ax. 3
            = (a × a) + (((0 × (-a)) + (0 × (-a))) + (-(0 × (-a))))              Ax. 1
            = (a × a) + (((0 + 0) × (-a)) + (-(0 × (-a))))                       Ax. 9
            = (a × a) + ((0 × (-a)) + (-(0 × (-a))))                             Ax. 2
            = (a × a) + 0                                                        Ax. 3
            = (a × a)                                                            Ax. 2

O crédito vai para Maltysen por 0 × (-a) = 0



14

18 passos

Não é a primeira prova de 18 etapas, mas é mais simples que as outras.

(-a)*(-a)
= (-a)*(-a) + 0                             [Axiom 2]
= (-a)*(-a) + ((-a)*a + -((-a)*a))          [Axiom 3]
= ((-a)*(-a) + (-a)*a) + -((-a)*a)          [Axiom 1]
= ((-a)*(-a) + ((-a) + 0)*a) + -((-a)*a)    [Axiom 2]
= ((-a)*(-a) + ((-a)*a + 0*a)) + -((-a)*a)  [Axiom 9]
= (((-a)*(-a) + (-a)*a) + 0*a) + -((-a)*a)  [Axiom 1]
= ((-a)*((-a) + a) + 0*a) + -((-a)*a)       [Axiom 8]
= ((-a)*(a + (-a)) + 0*a) + -((-a)*a)       [Axiom 4]
= ((-a)*0 + 0*a) + -((-a)*a)                [Axiom 3]
= (0*a + (-a)*0) + -((-a)*a)                [Axiom 4]
= ((a + (-a))*a + (-a)*0) + -((-a)*a)       [Axiom 3]
= ((a*a + (-a)*a) + (-a)*0) + -((-a)*a)     [Axiom 9]
= (a*a + ((-a)*a + (-a)*0)) + -((-a)*a)     [Axiom 1]
= (a*a + (-a)*(a + 0)) + -((-a)*a)          [Axiom 8]
= (a*a + (-a)*a) + -((-a)*a)                [Axiom 2]
= a*a + ((-a)*a + -((-a)*a))                [Axiom 1]
= a*a + 0                                   [Axiom 3]
= a*a                                       [Axiom 2]

Validar


9
A2: (-a) x (-a) = ((-a) + 0) x (-a)
A3:             = ((-a) + (a + (-a))) x (-a)
A9:             = ((-a) x (-a)) + ((a + (-a)) x (-a))
A4:             = ((-a) x (-a)) + (((-a) + a) x (-a))
A9:             = ((-a) x (-a)) + (((-a) x (-a)) + (a x (-a)))
A1:             = (((-a) x (-a)) + ((-a) x (-a))) + (a x (-a))
A2:             = (((-a) x (-a)) + ((-a) x (-a))) + (a x ((-a) + 0))
A3:             = (((-a) x (-a)) + ((-a) x (-a))) + (a x ((-a) + (a + (-a))))
A8:             = (((-a) x (-a)) + ((-a) x (-a))) + ((a x (-a)) + (a x (a + (-a))))
A8:             = (((-a) x (-a)) + ((-a) x (-a))) + ((a x (-a)) + ((a x a) + (a x (-a))))
A4:             = (((-a) x (-a)) + ((-a) x (-a))) + ((a x (-a)) + ((a x (-a)) + (a x a)))
A1:             = (((-a) x (-a)) + ((-a) x (-a))) + (((a x (-a)) + (a x (-a))) + (a x a))
A8:             = ((-a) x ((-a) + (-a))) + (((a x (-a)) + (a x (-a))) + (a x a))
A8:             = ((-a) x ((-a) + (-a))) + ((a x ((-a) + (-a))) + (a x a))
A1:             = (((-a) x ((-a) + (-a))) + (a x ((-a) + (-a)))) + (a x a)
A9:             = (((-a) + a) x ((-a) + (-a))) + (a x a)
A4:             = ((a + (-a)) x ((-a) + (-a))) + (a x a)
Lemma:          = (0 x ((-a) + (-a))) + (a x a)
A3:             = 0 + (a x a)
A4:             = (a x a) + 0
A2:             = (a x a)

Lemma: 0 = 0 x a

A3: 0 = (0 x a) + (-(0 x a))
A2:   = ((0 + 0) x a) + (-(0 x a))
A9:   = ((0 x a) + (0 x a)) + (-(0 x a))
A1:   = (0 x a) + ((0 x a) + (-(0 x a)))
A3:   = (0 x a) + 0
A2:   = (0 x a)

27 26 etapas Obrigado ao Funky Computer Man por observar uma linha duplicada.


1
Bem vindo ao site! Não sei por que você cria um lema apenas para usá-lo uma vez, mas suponho que não seja contra as regras.
Sriotchilism O'Zaic

@FunkyComputerMan Thank you! Você está certo; Não tenho certeza do que estava pensando quando escrevi esse lema ^^. E obrigado por sua edição e sua observação.
Jalil Compaoré

1
@ JalilCompaoré Acho que você poderá salvar esse último A3, aplicando A2o segundo (-a) ao invés do primeiro. Não tenho certeza, pois não tenho tempo para trabalhar com isso agora.
H.PWiz

7

6 + 7 + 7 + 6 + 3 = 29 passos

Eu realmente espero não ter estragado nada, deixe um comentário se você acha que eu fiz.

Lemma 1. a*0=0 (6 steps)

0 = a*0 + -(a*0)  axiom 3
= a*(0+0) + -(a*0) axiom 2
= (a*0 + a*0) + -(a*0) axiom 8
= a*0 + (a*0 + -(a*0)) axiom 1
= a*0 + 0 axiom 3
= a*0 axiom 2

Lemma 2. a*(-b) = -(a*b) (7 steps)

a*(-b) = a*(-b) + 0 axiom 2
= a*(-b) + (a*b + -(a*b)) axiom 3
= (a*(-b) + a*b) + -(a*b) axiom 1
= a*(-b+b) + -(a*b) axiom 8
= a*0 + -(a*b) axiom 3
= 0 + -(a*b) lemma 1
= -(a*b) axiom 2

Lemma 3. (-a)*b = -(a*b) (7 steps)
    same as above

Lemma 4. -(-(a)) = a (6 steps)

 -(-a) = (-(-a)) + 0    axiom 2
 = 0 + (-(-a))          axiom 4
 = (a + (-a)) + (-(-a)) axiom 3
 = a + ((-a) + (-(-a))) axiom 1
 = a + 0                axiom 3
 = a                    axiom 2

Theorem. -a*-a=0 (3 steps)

-a*-a = -(a*(-a)) lemma 3
= -(-(a*a)) lemma 2
= a*a lemma 4

Q.E.D.

3
Eu não acho que você pode fazer lemas embora
HyperNeutrino 26/09

11
"Teorema. -A * -a = 0" deve ser = a * a?
Sparr

2
@ H.PWiz Não tenho problemas com pessoas que usam lemas, mas elas custam tantas etapas quanto longas cada vez que são usadas. Eu recomendaria não usá-los, porque eles podem atrapalhar as otimizações, mas, no que me diz respeito, este post é bom.
Sriotchilism O'Zaic

4
ir de "0 + - (a * b)" para "- (a * b)" em uma única aplicação do axioma 2 não está correto. você precisa usar o axioma 4 para trocar os lados do + primeiro.
Sparr

2
A maneira como eu li é o lema 2/3 são 6 etapas mais uma instância do lema 1 por 12 etapas, o lema 4 é 6 etapas, num total de 30 etapas. Estou faltando alguma coisa aqui?
Tahg

6

23 passos

(-a) * (-a) = ((-a) * (-a)) + 0                                 ✔ axiom 2
            = ((-a) * (-a)) + (((-a) * a) + -((-a) * a))        ✔ axiom 3
            = (((-a) * (-a)) + (-a) * a) + -((-a) * a)          ✔ axiom 1
            = (-a) * (-a + a) + -((-a) * a)                     ✔ axiom 8
            = (-a) * (a + (-a)) + -((-a) * a)                   ✔ axiom 4
            = ((-a) * 0) + -((-a) * a)                          ✔ axiom 3
            = (((-a) * 0) + 0) + -((-a) * a)                    ✔ axiom 2
            = ((-a) * 0 + ((-a)*0 + -((-a)*0))) + -((-a) * a)   ✔ axiom 3
            = (((-a) * 0 + (-a)*0) + -((-a)*0)) + -((-a) * a)   ✔ axiom 1
            = ((-a) * (0 + 0) + -((-a)*0)) + -((-a) * a)        ✔ axiom 8
            = ((-a) * 0 + -((-a)*0)) + -((-a) * a)              ✔ axiom 2
            = 0 + -((-a) * a)                                   ✔ axiom 3
            = (0* a) + -(0*a) + -((-a) * a)                     ✔ axiom 3
            = ((0+0)* a) + -(0*a) + -((-a) * a)                 ✔ axiom 2
            = ((0 * a ) + (0*a) + -(0*a)) + -((-a) * a)         ✔ axiom 9
            = ((0 * a ) + ((0*a) + -(0*a))) + -((-a) * a)       ✔ axiom 1
            = ((0 * a ) + 0) + -((-a) * a)                      ✔ axiom 3
            = (0 * a ) + -((-a) * a)                            ✔ axiom 2
            = ((a + -a) * a ) + -((-a) * a)                     ✔ axiom 3
            = ((a * a) + (-a) * a) + -((-a) * a)                ✔ axiom 9
            = (a * a) + (((-a) * a) + -((-a) * a))              ✔ axiom 1
            = (a * a) + 0                                       ✔ axiom 3
            = a * a                                             ✔ axiom 2

Experimente online!

Sim, você leu certo, escrevi um verificador para este quebra-cabeça (naturalmente, há a possibilidade de o verificador estar errado)


5

34 passos

Lemma 1: 0=0*a (8 steps)
    0
A3: a*0 + -(a*0)
A4: -(a*0) + a*0
A2: -(a*0) + a*(0+0)
A8: -(a*0) + (a*0 + a*0)
A1: (-(a*0) + a*0) + a*0
A3: 0 + a*0
A4: a*0 + 0
A2: a*0

Theorem: -a*-a = a*a (49 steps)

    -a * -a
A2: (-a+0) * -a
A2: (-a+0) * (-a+0)
A3: (-a+(a+-a)) * (-a+0)
A3: (-a+(a+-a)) * (-a+(a+-a))
A8: -a*(-a+(a+-a)) + (a+-a)*(-a+(a+-a))
A8: -a*(-a+(a+-a)) + -a*(-a+(a+-a)) + a*(-a+(a+-a))
A3: -a*(-a+0)      + -a*(-a+(a+-a)) + a*(-a+(a+-a))
A3: -a*(-a+0)      + -a*(-a+0)      + a*(-a+(a+-a))
A8: -a*(-a+0)      + -a*(-a+0)      + a*-a + a*(a+-a)
A8: -a*(-a+0)      + -a*(-a+0)      + a*-a + a*a + a*-a
A2: -a*-a          + -a*(-a+0)      + a*-a + a*a + a*-a
A2: -a*-a          + -a*-a          + a*-a + a*a + a*-a
A8: -a*-a          + (-a+a)*-a             + a*a + a*-a
A3: -a*-a          + 0*-a                  + a*a + a*-a
L1: -a*-a          + 0                     + a*a + a*-a
A2: -a*-a                                  + a*a + a*-a
A4: a*a + -a*-a + a*-a
A8: a*a + (-a+a)*-a
A3: a*a + 0*-a
L1: a*a + 0
A2: a*a

1
Estou percebendo a falta de parênteses depois de um tempo. Como a associação custa etapas, acho que seria mais fácil verificar sua prova se você incluísse os parênteses.
Sriotchilism O'Zaic

Ainda estou melhorando e atualizando. Tentarei incluir todos os parênteses quando terminar.
Sparr

5

25 passos

Nota: com base na pergunta, estou assumindo que as regras da lógica (incluindo a igualdade) estão implícitas e não contam para a contagem total de etapas. Ou seja, coisas como "se x = y, então y = x" e "se ((P AND Q) AND R) então (P AND (Q AND R))" podem ser usadas implicitamente.

Lema Z [6 passos] : 0*a = 0:

0 = (0*a) + (-(0*a))       | Ax. 3
  = ((0+0)*a) + (-(0*a))   | Ax. 2
  = (0*a + 0*a) + (-(0*a)) | Ax. 9
  = 0*a + (0*a + (-(0*a))) | Ax. 1
  = 0*a + (0)              | Ax. 3
  = 0*a                    | Ax. 2

Lema M [12 etapas] :(-a)*b = -(a*b)

(-a)*b = (-a)*b + 0                | Ax. 2
       = (-a)*b + (a*b + (-(a*b))) | Ax. 3
       = ((-a)*b + a*b) + (-(a*b)) | Ax. 5
       = ((-a)+a)*b + (-(a*b))     | Ax. 9
       = 0*b + (-(a*b))            | Ax. 3
       = 0 + (-(a*b))              | Lem. Z [6]
       = -(a*b)                    | Ax. 2

Teorema [25 passos] :(-a)*(-a) = a*a

(-a)*(-a) = (-a)*(-a) + 0                | Ax. 2
          = 0 + (-a)*(-a)                | Ax. 4
          = (a*a + (-(a*a))) + (-a)*(-a) | Ax. 3
          = a*a + ((-(a*a)) + (-a)*(-a)) | Ax. 1
          = a*a + ((-a)*a + (-a)*(-a))   | Lem. M [12]
          = a*a + ((-a)*(a + (-a)))      | Ax. 8
          = a*a + ((-a)*0)               | Ax. 3
          = a*a + 0                      | Lem. Z [6]
          = a*a                          | Ax. 2

Sinto que há espaço para melhorias aqui; por exemplo, eu uso a propriedade comutativa da adição, embora pareça que isso deveria ser desnecessário, pois (-a)*(-a) = a*aé verdade em estruturas algébricas onde a adição é não comutativa. Por outro lado, nessas estruturas, a identidade aditiva é comutativa, e isso é tudo que eu precisava para a prova. Não sei. De maneira mais geral, a estrutura da prova parece bastante sem direção; Eu meio que joguei coisas no problema até que funcionasse, então aposto que há alguma otimização a ser feita.

Foi divertido - obrigado pela pergunta interessante e criativa OP! Eu nunca vi desafios como esses antes; espero que a se torne uma coisa!


Vejo como a abordagem usada no Lema Z poderia fazer uma prova equivalente 0=(-a)*0em 6 etapas. Tecnicamente, ele merece seu próprio lema, não é?
SmileAndNod

4

22 23 Passos

Nova resposta, como o meu anterior foi falho. Deixe-me adicionar alguns comentários gerais primeiro:

  • O problema não permite adicionar termos nos dois lados de uma equação; em vez disso, podemos apenas modificar uma string inicial.
  • Não se supõe que a multiplicação seja comutativa.
  • Recebemos uma unidade 1 , mas ela não desempenha nenhum papel no quebra-cabeça, porque está envolvida exclusivamente nas regras que a definem.

Agora, para a prova (observe que eu defino n = (-a) para simplificar a leitura):

(-a)×(-a) :=
n×n =
n×n + 0 =                                [Ax. 2]
n×n + [n×a + -(n×a)] =                   [Ax. 3]
[n×n + n×a] + -(n×a) =                   [Ax. 1]
[n×(n+a)] + -(n×a) =                     [Ax. 8]
[n×(n+a) + 0] + -(n×a) =                 [Ax. 2]
[n×(n+a) + (n×a + -(n×a))] + -(n×a) =    [Ax. 3]
[(n×(n+a) + n×a) + -(n×a)] + -(n×a) =    [Ax. 1]
[n×((n+a) + a) + -(n×a)] + -(n×a) =      [Ax. 8]
[n×((a+n) + a) + -(n×a)] + -(n×a) =      [Ax. 4]
[n×(0 + a) + -(n×a)] + -(n×a) =          [Ax. 3]
[n×(a + 0) + -(n×a)] + -(n×a) =          [Ax. 4]
[n×a + -(n×a)] + -(n×a) =                [Ax. 2]
[(n+0)×a + -(n×a)] + -(n×a) =            [Ax. 2]
[(0+n)×a + -(n×a)] + -(n×a) =            [Ax. 4]
[((a+n)+n)×a + -(n×a)] + -(n×a) =        [Ax. 3]
[((a+n)×a+n×a) + -(n×a)] + -(n×a) =      [Ax. 9]
[(a+n)×a+(n×a + -(n×a))] + -(n×a) =      [Ax. 1]
[(a+n)×a + 0] + -(n×a) =                 [Ax. 3]
[(a+n)×a] + -(n×a) =                     [Ax. 2]
[a×a+n×a] + -(n×a) =                     [Ax. 9]
a×a+[n×a + -(n×a)] =                     [Ax. 1]
a×a+0 =                                  [Ax. 3]
a×a                                      [Ax. 2]

@ H.PWiz, por que você não pode ir npara 0 + numa etapa? Isso não é apenas A2? As regras não dizem as variáveis também pode servir de expressões complexas arbitrariamente
jq170727

@ jq170727 O Axioma 2 afirma apenas a + 0 = aisso 0 + a = a. Você precisa de uma etapa comutativa extra para ir de npara 0 + n.
Sriotchilism O'Zaic

@ H.PWiz, você não consegue ler o axioma ao contrário?
precisa saber é o seguinte

1
@ jq170727 Não, você precisa usar a comutatividade para isso.
Jalil Compaoré

4

304 passos

Wiki da comunidade porque essa prova é gerada pela função FindEquationalProof do Mathematica .

A prova é bastante longa. O Mathematica não sabe jogar golfe.

Este é o código Mathematica que gera a prova (requer Mathematica 11.3), onde p, t, nmeios +, ×, -respectivamente:

ringAxioms = {ForAll[{a, b, c}, p[a, p[b, c]] == p[p[a, b], c]],
   ForAll[a, p[a, 0] == a],
   ForAll[a, p[a, n[a]] == 0],
   ForAll[{a, b}, p[a, b] == p[b, a]],
   ForAll[{a, b, c}, t[a, t[b, c]] == t[t[a, b], c]],
   ForAll[a, t[a, 1] == a], ForAll[a, t[1, a] == a],
   ForAll[{a, b, c}, t[a, p[b, c]] == p[t[a, b], t[a, c]]],
   ForAll[{a, b, c}, t[p[b, c], a] == p[t[b, a], t[c, a]]]};

proof = FindEquationalProof[t[n[a], n[a]] == t[a, a], ringAxioms];

proof["ProofNotebook"]

Não é fácil contar as etapas diretamente, por isso calculo-o pelo número de caminhos dos axiomas até a conclusão no "gráfico de prova".

graph = proof["ProofGraph"];
score = Sum[
  Length[FindPath[graph, axiom, "Conclusion 1", Infinity, 
    All]], {axiom, 
   Select[VertexList[graph], StringMatchQ["Axiom " ~~ __]]}]

Experimente online!

Esta é a prova gerada pelo código:

Axiom 1

We are given that:

x1==p[x1, 0]

Axiom 2

We are given that:

x1==t[x1, 1]

Axiom 3

We are given that:

x1==t[1, x1]

Axiom 4

We are given that:

p[x1, x2]==p[x2, x1]

Axiom 5

We are given that:

p[x1, p[x2, x3]]==p[p[x1, x2], x3]

Axiom 6

We are given that:

p[x1, n[x1]]==0

Axiom 7

We are given that:

p[t[x1, x2], t[x3, x2]]==t[p[x1, x3], x2]

Axiom 8

We are given that:

p[t[x1, x2], t[x1, x3]]==t[x1, p[x2, x3]]

Axiom 9

We are given that:

t[x1, t[x2, x3]]==t[t[x1, x2], x3]

Hypothesis 1

We would like to show that:

t[n[a], n[a]]==t[a, a]

Critical Pair Lemma 1

The following expressions are equivalent:

p[0, x1]==x1

Proof

Note that the input for the rule:

p[x1_, x2_]\[TwoWayRule]p[x2_, x1_]

contains a subpattern of the form:

p[x1_, x2_]

which can be unified with the input for the rule:

p[x1_, 0]->x1

where these rules follow from Axiom 4 and Axiom 1 respectively.

Critical Pair Lemma 2

The following expressions are equivalent:

p[x1, p[n[x1], x2]]==p[0, x2]

Proof

Note that the input for the rule:

p[p[x1_, x2_], x3_]->p[x1, p[x2, x3]]

contains a subpattern of the form:

p[x1_, x2_]

which can be unified with the input for the rule:

p[x1_, n[x1_]]->0

where these rules follow from Axiom 5 and Axiom 6 respectively.

Critical Pair Lemma 3

The following expressions are equivalent:

t[p[1, x1], x2]==p[x2, t[x1, x2]]

Proof

Note that the input for the rule:

p[t[x1_, x2_], t[x3_, x2_]]->t[p[x1, x3], x2]

contains a subpattern of the form:

t[x1_, x2_]

which can be unified with the input for the rule:

t[1, x1_]->x1

where these rules follow from Axiom 7 and Axiom 3 respectively.

Critical Pair Lemma 4

The following expressions are equivalent:

t[x1, p[1, x2]]==p[x1, t[x1, x2]]

Proof

Note that the input for the rule:

p[t[x1_, x2_], t[x1_, x3_]]->t[x1, p[x2, x3]]

contains a subpattern of the form:

t[x1_, x2_]

which can be unified with the input for the rule:

t[x1_, 1]->x1

where these rules follow from Axiom 8 and Axiom 2 respectively.

Critical Pair Lemma 5

The following expressions are equivalent:

t[p[1, x1], 0]==t[x1, 0]

Proof

Note that the input for the rule:

p[x1_, t[x2_, x1_]]->t[p[1, x2], x1]

contains a subpattern of the form:

p[x1_, t[x2_, x1_]]

which can be unified with the input for the rule:

p[0, x1_]->x1

where these rules follow from Critical Pair Lemma 3 and Critical Pair Lemma 1 respectively.

Critical Pair Lemma 6

The following expressions are equivalent:

t[0, 0]==t[1, 0]

Proof

Note that the input for the rule:

t[p[1, x1_], 0]->t[x1, 0]

contains a subpattern of the form:

p[1, x1_]

which can be unified with the input for the rule:

p[x1_, 0]->x1

where these rules follow from Critical Pair Lemma 5 and Axiom 1 respectively.

Substitution Lemma 1

It can be shown that:

t[0, 0]==0

Proof

We start by taking Critical Pair Lemma 6, and apply the substitution:

t[1, x1_]->x1

which follows from Axiom 3.

Critical Pair Lemma 7

The following expressions are equivalent:

t[x1, 0]==t[p[x1, 1], 0]

Proof

Note that the input for the rule:

t[p[1, x1_], 0]->t[x1, 0]

contains a subpattern of the form:

p[1, x1_]

which can be unified with the input for the rule:

p[x1_, x2_]\[TwoWayRule]p[x2_, x1_]

where these rules follow from Critical Pair Lemma 5 and Axiom 4 respectively.

Critical Pair Lemma 8

The following expressions are equivalent:

t[0, p[1, x1]]==t[0, x1]

Proof

Note that the input for the rule:

p[x1_, t[x1_, x2_]]->t[x1, p[1, x2]]

contains a subpattern of the form:

p[x1_, t[x1_, x2_]]

which can be unified with the input for the rule:

p[0, x1_]->x1

where these rules follow from Critical Pair Lemma 4 and Critical Pair Lemma 1 respectively.

Critical Pair Lemma 9

The following expressions are equivalent:

t[p[x1, 1], p[1, 0]]==p[p[x1, 1], t[x1, 0]]

Proof

Note that the input for the rule:

p[x1_, t[x1_, x2_]]->t[x1, p[1, x2]]

contains a subpattern of the form:

t[x1_, x2_]

which can be unified with the input for the rule:

t[p[x1_, 1], 0]->t[x1, 0]

where these rules follow from Critical Pair Lemma 4 and Critical Pair Lemma 7 respectively.

Substitution Lemma 2

It can be shown that:

t[p[x1, 1], 1]==p[p[x1, 1], t[x1, 0]]

Proof

We start by taking Critical Pair Lemma 9, and apply the substitution:

p[x1_, 0]->x1

which follows from Axiom 1.

Substitution Lemma 3

It can be shown that:

p[x1, 1]==p[p[x1, 1], t[x1, 0]]

Proof

We start by taking Substitution Lemma 2, and apply the substitution:

t[x1_, 1]->x1

which follows from Axiom 2.

Substitution Lemma 4

It can be shown that:

p[x1, 1]==p[x1, p[1, t[x1, 0]]]

Proof

We start by taking Substitution Lemma 3, and apply the substitution:

p[p[x1_, x2_], x3_]->p[x1, p[x2, x3]]

which follows from Axiom 5.

Critical Pair Lemma 10

The following expressions are equivalent:

t[0, x1]==t[0, p[x1, 1]]

Proof

Note that the input for the rule:

t[0, p[1, x1_]]->t[0, x1]

contains a subpattern of the form:

p[1, x1_]

which can be unified with the input for the rule:

p[x1_, x2_]\[TwoWayRule]p[x2_, x1_]

where these rules follow from Critical Pair Lemma 8 and Axiom 4 respectively.

Critical Pair Lemma 11

The following expressions are equivalent:

t[p[1, 0], p[x1, 1]]==p[p[x1, 1], t[0, x1]]

Proof

Note that the input for the rule:

p[x1_, t[x2_, x1_]]->t[p[1, x2], x1]

contains a subpattern of the form:

t[x2_, x1_]

which can be unified with the input for the rule:

t[0, p[x1_, 1]]->t[0, x1]

where these rules follow from Critical Pair Lemma 3 and Critical Pair Lemma 10 respectively.

Substitution Lemma 5

It can be shown that:

t[1, p[x1, 1]]==p[p[x1, 1], t[0, x1]]

Proof

We start by taking Critical Pair Lemma 11, and apply the substitution:

p[x1_, 0]->x1

which follows from Axiom 1.

Substitution Lemma 6

It can be shown that:

p[x1, 1]==p[p[x1, 1], t[0, x1]]

Proof

We start by taking Substitution Lemma 5, and apply the substitution:

t[1, x1_]->x1

which follows from Axiom 3.

Substitution Lemma 7

It can be shown that:

p[x1, 1]==p[x1, p[1, t[0, x1]]]

Proof

We start by taking Substitution Lemma 6, and apply the substitution:

p[p[x1_, x2_], x3_]->p[x1, p[x2, x3]]

which follows from Axiom 5.

Substitution Lemma 8

It can be shown that:

p[x1, p[n[x1], x2]]==x2

Proof

We start by taking Critical Pair Lemma 2, and apply the substitution:

p[0, x1_]->x1

which follows from Critical Pair Lemma 1.

Critical Pair Lemma 12

The following expressions are equivalent:

n[n[x1]]==p[x1, 0]

Proof

Note that the input for the rule:

p[x1_, p[n[x1_], x2_]]->x2

contains a subpattern of the form:

p[n[x1_], x2_]

which can be unified with the input for the rule:

p[x1_, n[x1_]]->0

where these rules follow from Substitution Lemma 8 and Axiom 6 respectively.

Substitution Lemma 9

It can be shown that:

n[n[x1]]==x1

Proof

We start by taking Critical Pair Lemma 12, and apply the substitution:

p[x1_, 0]->x1

which follows from Axiom 1.

Critical Pair Lemma 13

The following expressions are equivalent:

x1==p[n[x2], p[x2, x1]]

Proof

Note that the input for the rule:

p[x1_, p[n[x1_], x2_]]->x2

contains a subpattern of the form:

n[x1_]

which can be unified with the input for the rule:

n[n[x1_]]->x1

where these rules follow from Substitution Lemma 8 and Substitution Lemma 9 respectively.

Critical Pair Lemma 14

The following expressions are equivalent:

t[x1, x2]==p[n[x2], t[p[1, x1], x2]]

Proof

Note that the input for the rule:

p[n[x1_], p[x1_, x2_]]->x2

contains a subpattern of the form:

p[x1_, x2_]

which can be unified with the input for the rule:

p[x1_, t[x2_, x1_]]->t[p[1, x2], x1]

where these rules follow from Critical Pair Lemma 13 and Critical Pair Lemma 3 respectively.

Critical Pair Lemma 15

The following expressions are equivalent:

t[x1, x2]==p[n[x1], t[x1, p[1, x2]]]

Proof

Note that the input for the rule:

p[n[x1_], p[x1_, x2_]]->x2

contains a subpattern of the form:

p[x1_, x2_]

which can be unified with the input for the rule:

p[x1_, t[x1_, x2_]]->t[x1, p[1, x2]]

where these rules follow from Critical Pair Lemma 13 and Critical Pair Lemma 4 respectively.

Critical Pair Lemma 16

The following expressions are equivalent:

p[1, t[x1, 0]]==p[n[x1], p[x1, 1]]

Proof

Note that the input for the rule:

p[n[x1_], p[x1_, x2_]]->x2

contains a subpattern of the form:

p[x1_, x2_]

which can be unified with the input for the rule:

p[x1_, p[1, t[x1_, 0]]]->p[x1, 1]

where these rules follow from Critical Pair Lemma 13 and Substitution Lemma 4 respectively.

Substitution Lemma 10

It can be shown that:

p[1, t[x1, 0]]==1

Proof

We start by taking Critical Pair Lemma 16, and apply the substitution:

p[n[x1_], p[x1_, x2_]]->x2

which follows from Critical Pair Lemma 13.

Critical Pair Lemma 17

The following expressions are equivalent:

t[t[x1, 0], 0]==t[1, 0]

Proof

Note that the input for the rule:

t[p[1, x1_], 0]->t[x1, 0]

contains a subpattern of the form:

p[1, x1_]

which can be unified with the input for the rule:

p[1, t[x1_, 0]]->1

where these rules follow from Critical Pair Lemma 5 and Substitution Lemma 10 respectively.

Substitution Lemma 11

It can be shown that:

t[x1, t[0, 0]]==t[1, 0]

Proof

We start by taking Critical Pair Lemma 17, and apply the substitution:

t[t[x1_, x2_], x3_]->t[x1, t[x2, x3]]

which follows from Axiom 9.

Substitution Lemma 12

It can be shown that:

t[x1, 0]==t[1, 0]

Proof

We start by taking Substitution Lemma 11, and apply the substitution:

t[0, 0]->0

which follows from Substitution Lemma 1.

Substitution Lemma 13

It can be shown that:

t[x1, 0]==0

Proof

We start by taking Substitution Lemma 12, and apply the substitution:

t[1, x1_]->x1

which follows from Axiom 3.

Critical Pair Lemma 18

The following expressions are equivalent:

t[x1, t[0, x2]]==t[0, x2]

Proof

Note that the input for the rule:

t[t[x1_, x2_], x3_]->t[x1, t[x2, x3]]

contains a subpattern of the form:

t[x1_, x2_]

which can be unified with the input for the rule:

t[x1_, 0]->0

where these rules follow from Axiom 9 and Substitution Lemma 13 respectively.

Critical Pair Lemma 19

The following expressions are equivalent:

p[1, t[0, x1]]==p[n[x1], p[x1, 1]]

Proof

Note that the input for the rule:

p[n[x1_], p[x1_, x2_]]->x2

contains a subpattern of the form:

p[x1_, x2_]

which can be unified with the input for the rule:

p[x1_, p[1, t[0, x1_]]]->p[x1, 1]

where these rules follow from Critical Pair Lemma 13 and Substitution Lemma 7 respectively.

Substitution Lemma 14

It can be shown that:

p[1, t[0, x1]]==1

Proof

We start by taking Critical Pair Lemma 19, and apply the substitution:

p[n[x1_], p[x1_, x2_]]->x2

which follows from Critical Pair Lemma 13.

Critical Pair Lemma 20

The following expressions are equivalent:

t[0, t[0, x1]]==t[0, 1]

Proof

Note that the input for the rule:

t[0, p[1, x1_]]->t[0, x1]

contains a subpattern of the form:

p[1, x1_]

which can be unified with the input for the rule:

p[1, t[0, x1_]]->1

where these rules follow from Critical Pair Lemma 8 and Substitution Lemma 14 respectively.

Substitution Lemma 15

It can be shown that:

t[0, x1]==t[0, 1]

Proof

We start by taking Critical Pair Lemma 20, and apply the substitution:

t[x1_, t[0, x2_]]->t[0, x2]

which follows from Critical Pair Lemma 18.

Substitution Lemma 16

It can be shown that:

t[0, x1]==0

Proof

We start by taking Substitution Lemma 15, and apply the substitution:

t[x1_, 1]->x1

which follows from Axiom 2.

Critical Pair Lemma 21

The following expressions are equivalent:

t[n[1], x1]==p[n[x1], t[0, x1]]

Proof

Note that the input for the rule:

p[n[x1_], t[p[1, x2_], x1_]]->t[x2, x1]

contains a subpattern of the form:

p[1, x2_]

which can be unified with the input for the rule:

p[x1_, n[x1_]]->0

where these rules follow from Critical Pair Lemma 14 and Axiom 6 respectively.

Substitution Lemma 17

It can be shown that:

t[n[1], x1]==p[n[x1], 0]

Proof

We start by taking Critical Pair Lemma 21, and apply the substitution:

t[0, x1_]->0

which follows from Substitution Lemma 16.

Substitution Lemma 18

It can be shown that:

t[n[1], x1]==n[x1]

Proof

We start by taking Substitution Lemma 17, and apply the substitution:

p[x1_, 0]->x1

which follows from Axiom 1.

Critical Pair Lemma 22

The following expressions are equivalent:

t[n[1], t[x1, x2]]==t[n[x1], x2]

Proof

Note that the input for the rule:

t[t[x1_, x2_], x3_]->t[x1, t[x2, x3]]

contains a subpattern of the form:

t[x1_, x2_]

which can be unified with the input for the rule:

t[n[1], x1_]->n[x1]

where these rules follow from Axiom 9 and Substitution Lemma 18 respectively.

Substitution Lemma 19

It can be shown that:

n[t[x1, x2]]==t[n[x1], x2]

Proof

We start by taking Critical Pair Lemma 22, and apply the substitution:

t[n[1], x1_]->n[x1]

which follows from Substitution Lemma 18.

Critical Pair Lemma 23

The following expressions are equivalent:

t[x1, n[1]]==p[n[x1], t[x1, 0]]

Proof

Note that the input for the rule:

p[n[x1_], t[x1_, p[1, x2_]]]->t[x1, x2]

contains a subpattern of the form:

p[1, x2_]

which can be unified with the input for the rule:

p[x1_, n[x1_]]->0

where these rules follow from Critical Pair Lemma 15 and Axiom 6 respectively.

Substitution Lemma 20

It can be shown that:

t[x1, n[1]]==p[n[x1], 0]

Proof

We start by taking Critical Pair Lemma 23, and apply the substitution:

t[x1_, 0]->0

which follows from Substitution Lemma 13.

Substitution Lemma 21

It can be shown that:

t[x1, n[1]]==n[x1]

Proof

We start by taking Substitution Lemma 20, and apply the substitution:

p[x1_, 0]->x1

which follows from Axiom 1.

Critical Pair Lemma 24

The following expressions are equivalent:

n[t[x1, x2]]==t[x1, t[x2, n[1]]]

Proof

Note that the input for the rule:

t[x1_, n[1]]->n[x1]

contains a subpattern of the form:

t[x1_, n[1]]

which can be unified with the input for the rule:

t[t[x1_, x2_], x3_]->t[x1, t[x2, x3]]

where these rules follow from Substitution Lemma 21 and Axiom 9 respectively.

Substitution Lemma 22

It can be shown that:

t[n[x1], x2]==t[x1, t[x2, n[1]]]

Proof

We start by taking Critical Pair Lemma 24, and apply the substitution:

n[t[x1_, x2_]]->t[n[x1], x2]

which follows from Substitution Lemma 19.

Substitution Lemma 23

It can be shown that:

t[n[x1], x2]==t[x1, n[x2]]

Proof

We start by taking Substitution Lemma 22, and apply the substitution:

t[x1_, n[1]]->n[x1]

which follows from Substitution Lemma 21.

Substitution Lemma 24

It can be shown that:

t[a, n[n[a]]]==t[a, a]

Proof

We start by taking Hypothesis 1, and apply the substitution:

t[n[x1_], x2_]->t[x1, n[x2]]

which follows from Substitution Lemma 23.

Conclusion 1

We obtain the conclusion:

True

Proof

Take Substitution Lemma 24, and apply the substitution:

n[n[x1_]]->x1

which follows from Substitution Lemma 9.
Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.