Saída de todas as permutações distintas de um vetor


9

Desafio:

Saída de todas as permutações distintas de uma lista potencialmente longa de números inteiros positivos. Você pode supor que o vetor tenha menos de 1.000 números ao testar, mas em teoria o processo deve funcionar para qualquer vetor com mais de um número, independentemente do tamanho.

Restrições:

  • Você deve restringir o uso da memória a O (n ^ 2) , onde n é o número de elementos no vetor de entrada. Você não pode ter O (n!) . Isso significa que você não pode armazenar todas as permutações na memória.
  • Você deve restringir a complexidade do tempo a O (tamanho do resultado * n) . Se todos os números forem iguais, então será O (n) e, se todos forem distintos, será O (n! * N) . Isso significa que você não pode criar uma permutação e compará-la com todas as outras permutações para garantir a distinção (isso seria O (n! ^ 2 * n) ).
  • Medidas empíricas para mostrar que as restrições de tempo e memória são atendidas são aceitas.
  • Você deve realmente imprimir / imprimir as permutações (já que é impossível armazená-las).

Se você executar o programa por tempo suficiente, todas as permutações deverão ser produzidas (em teoria)!

Permutações distintas:

A lista [1, 1, 2] possui três permutações, e não seis: [1, 1, 2] , [1, 2, 1] e [2, 1, 1] . Você pode escolher a ordem da saída.


Casos de teste gerenciáveis:

Input: 
[1, 2, 1]
Output:
[1, 1, 2]
[1, 2, 1]
[2, 1, 1] 

Input:
[1, 2, 3, 2]
Output:
[1, 2, 2, 3]
[1, 2, 3, 2]
[1, 3, 2, 2]
[2, 1, 2, 3]
[2, 1, 3, 2]
[2, 2, 1, 3]
[2, 2, 3, 1]
[2, 3, 1, 2]
[2, 3, 2, 1]
[3, 1, 2, 2]
[3, 2, 1, 2]
[3, 2, 2, 1]

Input:
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
Output:
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

Caso de teste maior:

É impossível produzir todas as permutações para este, mas deveria funcionar em teoria se você desse tempo suficiente (mas não memória ilimitada).

Input:
[1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900]

Você deve explicar como sabe que todas as permutações são distintas e que todas as permutações serão impressas, eventualmente.

Isso é então o código mais curto em bytes vence.


2
Existe uma implementação de referência que atenda a esses requisitos de complexidade?
71817 Steven H.

11
Não deve ser muito difícil criar um algoritmo que atenda aos requisitos (embora possa não ser muito complicado). Não sou programador nem matemático, sou apenas um humilde escritor de desafios. Vou deixar as coisas complicado para vocês / meninas :)
Stewie Griffin

6
Eu acho que, dadas as características das restrições, isso seria melhor como um código mais rápido, pois o código de golfe geralmente é para uso inteligente de recursos incorporados e recursos de linguagem.
Uriel #

3
"Não deve ser muito difícil", é possível "
Fatalize 7/17/17

11
Uma função geradora é aceitável ou devemos adicionar clichê a essa solução para impressão / saída?
Jonathan Allan

Respostas:


6

JavaScript (ES6), 177 169 bytes

a=>{s=''+a
do{console.log(a)
k=a.findIndex((e,i)=>a[i-1]>e)
if(~k)t=a[k],a[k]=a[l=a.findIndex(e=>e>t)],a[l]=t,a=a.map((e,i)=>i<k?a[k+~i]:e)
else a.reverse()}while(a!=s)}

Usa o conhecido algoritmo de geração de permutação lexicográfica, que acredito ter memória O (len (matriz)) e tempo O (len (matriz) * len (saída)). (Observe que os elementos da matriz são considerados em ordem inversa, de modo que, por exemplo, 2, 2, 1, 1serão enumerados para 2, 1, 2, 1; 1, 2, 2, 1etc.


5

Python 3 com sympy , (50?) 81 bytes

lambda a:[print(v)for v in sympy.iterables.multiset_permutations(a)]
import sympy

Experimente online!

50 bytes se uma função do gerador for aceitável:

import sympy
sympy.iterables.multiset_permutations

A implementação é de código aberto e atualmente disponível no hub git , no momento da gravação, a função está na linha 983 .

Eu acho que sim, mas deixe-me saber se não, cumprir os limites assintóticos.


Python 2, (411?) 439 bytes

Uma versão em golf (também ignorando os casos que não é necessário abordar) no Python 2 (ainda usando o built-in itertools.permutations function) chega a 439 bytes ou 411 sem nenhum padrão adicional para imprimir em vez de gerar (the for v in h(input()):print v):

from itertools import*
def h(a,z=-1,g=1):
 x=[v for v in[g,[[v,a.count(v)]for v in set(a)]][g==1]if 0<v[1]];S=sum([v[1]for v in x])
 if x==x[:1]:k,v=x[0];yield[k for i in range([[0,z][z<=v],v][z<1])]
 elif all(v<2for k,v in x):
    for p in permutations([v[0]for v in x],[z,None][z<0]):yield list(p)
 else:
    z=[S,z][z>-1];i=0
    for k,v in x:
     x[i][1]-=1
     for j in h([],z-1,x):
        if j:yield[k]+j
     x[i][1]+=1;i+=1
for v in h(input()):print v

(nota: isso usa o golfe Python 2 de guias e espaços alternativos para recuos)


Não há necessidade de escrever "no momento em que a função está na linha 983" , você pode permalink no último commit: github.com/sympy/sympy/blob/… .
orlp

@orlp Não existe um link permanente para lá já?
Erik the Outgolfer

@EriktheOutgolfer Vinculei a um commit específico, não à "versão mais recente", o que significa que meu link não será desatualizado por alterações futuras.
Orlp

2

C ++ (gcc) , 203 bytes

Aparentemente, o C ++ tem isso como uma função interna ...

#import<bits/stdc++.h>
using namespace std;main(){vector<int>v;int x;while(cin>>x)v.push_back(x);sort(v.begin(),v.end());do{for(int y:v)cout<<y<<' ';puts("");}while(next_permutation(v.begin(),v.end()));}

Experimente online!

Código não utilizado: link TIO.

Isso usa O(n)memória (garantida por std::vector) e tempo de execução ideal.

Algumas otimizações no código:

  • Use em importvez de include(extensão obsoleta do G ++)
  • Use bits/stdc++.h(o cabeçalho pré-compilado contém todos os outros cabeçalhos) em vez de vários cabeçalhos necessários. Geralmente, isso torna o tempo de compilação mais lento.
  • using namespace stdque é conhecido por ser uma má idéia .
  • Use em puts("")vez de cout<<'\n'escrever uma nova linha. Isso é normal para o programa C, mas me parece estranho. Então, acho que isso deve ser mencionado.
  • mainO valor de retorno ( int) pode ser omitido.

Caso contrário (além da exclusão de espaço em branco), é da mesma maneira que costumo programar em C ++.

Algumas otimizações possíveis: (não sei se isso é permitido por padrão):

  • Digite o tamanho da matriz antes de inserir elementos. Isso permitirá uma matriz de tamanho dinâmico, economizando 30 bytes no geral .
  • Não separe as saídas com separadores. Então, a saída vai gostar 1 1 2 3 1 1 3 2 1 2 1 3 1 2 3 1 1 3 1 2 1 3 2 1 2 1 1 3 2 1 3 1 2 3 1 1 3 1 1 2 3 1 2 1 3 2 1 1de 1 2 1 3. Isso permite salvar mais 9 bytes.
  • Enquanto em C é permitido omitir cabeçalhos, não sei se existe uma maneira mais curta de usar essas funções sem #importos cabeçalhos em C ++ ou um nome mais curto.

Talvez você deva mencionar porque std::sortnão faz complexidade de tempo estouro
l4m2

Também 2 bytes salvosusing namespace std;main(){vector<int>v;for(int x;cin>>x;v.push_back(x));sort(v.begin(),v.end());do for(int y:v)cout<<y<<' ';while(puts(""),next_permutation(v.begin(),v.end()));}
l4m2

#import<bits/stdc++.h>@#define Q v.begin(),v.end())@using namespace std;main(){vector<int>v;for(int x;cin>>x;v.push_back(x));sort(Q;do for(int y:v)cout<<y<<' ';while(puts(""),next_permutation(Q);}@ is newline
l4m2 21/10


2

JavaScript (Node.js) , 137 128 123 bytes

s=>f(x=c=[],s.map(g=i=>g[i]=-~g[i]));f=i=>Object.keys(g).map(i=>g(i,--g[i]||delete g[i],f(x[c++]=i),c--))<1&&console.log(x)

Experimente online!

s=>
    f(
        x=c=[],
        s.map(g=i=>g[i]=-~g[i]) // O(n) if all same, <=O(n^2) if different
    )
;
f=i=>
    Object.keys(g).map( // for(i in g) breaks when other items get removed
        i=>g(
            i,
            --g[i]||delete g[i], // O(left possible numbers)<O(child situations)
            f(x[c++]=i),
            c--
        )
    )<1
&&
    console.log(x)

0

APL (NARS), 156 caracteres, 312 bytes

r←d F w;i;k;a;m;j;v
r←w⋄→0×⍳1≥k←↑⍴w⋄a←⍳k⋄j←i←1⋄r←⍬⋄→C
A: m←i⊃w⋄→B×⍳(i≠1)∧j=m
   v←m,¨(d,m)∇w[a∼i]
   →H×⍳0=↑⍴v⋄⎕←∊d,v
H: j←m
B: i+←1
C: →A×⍳i≤k

G←{⍬F⍵[⍋⍵]}

Eles, F e G seriam 2 funções para usar juntos ... G primeiro ordena o array que aplica ao array ordenado a função F e escreve permutações usando a observação de que se o elemento já for encontrado, é melhor não recursar (porque todo o resultado já seria encontrado). Não sei se isso se encaixa em todas as restrições ... Teste:

  G 1 1 2
1 1 2 
1 2 1 
2 1 1 

  G 1 2 3 2
1 2 2 3 
1 2 3 2 
1 3 2 2 
2 1 2 3 
2 1 3 2 
2 2 1 3 
2 2 3 1 
2 3 1 2 
2 3 2 1 
3 1 2 2 
3 2 1 2 
3 2 2 1 

  G 'abb'
abb
bab
bba
Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.