Regex (ECMAScript), 276 205 201 193 189 bytes
Comparar as multiplicidades (expoentes) de diferentes fatores primos é um problema interessante para resolver com o regex ECMAScript - a falta de referências anteriores que persistem através das iterações de um loop torna um desafio contar qualquer coisa. Mesmo que seja possível contar a característica numérica em questão, muitas vezes uma abordagem mais indireta contribui para um melhor golfe.
Como em outras postagens de regex do ECMA, darei um aviso de spoiler: recomendo aprender como resolver problemas matemáticos unários no regex do ECMAScript. Foi uma jornada fascinante para mim, e não quero estragá-la para quem potencialmente queira experimentá-la, especialmente aqueles com interesse em teoria dos números. Consulte esta postagem anterior para obter uma lista de problemas recomendados consecutivamente identificados por spoilers para resolver um por um.
Portanto , não leia mais se não quiser que você estrague uma mágica avançada de expressões regulares unárias . Se você quiser tentar descobrir essa mágica, recomendo começar resolvendo alguns problemas no regex ECMAScript, conforme descrito no post acima.
A carga útil principal de um regex que eu desenvolvi anteriormente se mostrou muito aplicável a esse desafio. Esse é o regex que encontra os primos da maior multiplicidade . Minha primeira solução para isso foi muito longa e, mais tarde, joguei por etapas, primeiro reescrevendo-o para usar lookahead molecular e, em seguida, enviando-o de volta ao ECMAScript simples, usando uma técnica avançada para solucionar a falta de lookahead molecular e, posteriormente, diminuindo o tamanho da solução ECMAScript original.
A parte desse regex que se aplica a esse problema é a primeira etapa, que encontra Q, o menor fator de N que compartilha todos os fatores primos. Quando temos esse número, tudo o que precisamos fazer para mostrar que N é um "número de expoente constante" é dividir N por Q até que não possamos mais; se o resultado for 1, todos os números primos são de igual multiplicidade.
Depois de enviar uma resposta usando meu algoritmo desenvolvido anteriormente para encontrar Q, percebi que ele poderia ser calculado de uma maneira totalmente diferente: Encontre o maior fator livre de quadrados de N (usando o mesmo algoritmo que meu número regular de Carmichael ). Como se vê, isso não apresenta nenhuma dificuldade * em termos de contornar a falta de visores moleculares e de comprimento variável (não há necessidade de usar a técnica avançada usada anteriormente) e é 64 bytes mais curto! Além disso, elimina a complexidade de tratar N livre de quadrados e N principal como casos especiais diferentes, eliminando outros 7 bytes desta solução.
(Ainda existem outros problemas que exigem a técnica avançada usada anteriormente para reduzir o cálculo de Q, mas atualmente nenhum deles é representado pelos meus posts do PPCG.)
Coloquei o teste de multiplicidade antes do teste dos primos consecutivos, porque o último é muito mais lento; colocar testes que podem falhar mais rapidamente primeiro torna o regex mais rápido para entrada distribuída uniformemente. Também é melhor colocar o golfe em primeiro lugar, porque ele usa mais referências anteriores (que custariam mais se fossem de dois dígitos).
Consegui eliminar 4 bytes desse regex (193 → 189) usando um truque encontrado por Grimy que pode reduzir ainda mais a divisão no caso de garantir que o quociente seja maior ou igual ao divisor.
^(?=(|(x+)\2*(?=\2$))((?=(xx+?)\4*$)(?=(x+)(\5+$))\6(?!\4*$))*x$)(?=.*$\2|((?=((x*)(?=\2\9+$)x)(\8*$))\10)*x$)(?!(((x+)(?=\13+$)(x+))(?!\12+$)(x+))\11*(?=\11$)(?!(\15\14?)?((xx+)\18+|x?)$))
Experimente online!
# For the purposes of these comments, the input number = N.
^
# Assert that all of N's prime factors are of equal multiplicity
# Step 1: Find Q, the largest square-free factor of N (which will also be the smallest
# factor of N that has all the same prime factors as N) and put it in \2.
# If N is square-free, \2 will be unset.
(?=
# Search through all factors of N, from largest to smallest, searching for one that
# satisfies the desired property. The first factor tried will be N itself, for which
# \2 will be unset.
(|(x+)\2*(?=\2$)) # for factors < N: \2 = factor of N; tail = \2
# Assert that tail is square-free (its prime factors all have single multiplicity)
(
(?=(xx+?)\4*$) # \4 = smallest prime factor of tail
(?=(x+)(\5+$)) # \5 = tail / \4 (implicitly); \6 = tool to make tail = \5
\6 # tail = \5
(?!\4*$) # Assert that tail is no longer divisible by \4, i.e. that that
# prime factor was of exactly single multiplicity.
)*x$
)
# Step 2: Require that either \2 is unset, or that the result of repeatedly
# dividing tail by \2 is 1.
(?=
.*$\2
|
(
# In the following division calculation, we can skip the test for divisibility
# by \2-1 because it's guaranteed that \2 <= \8. As a result, we did not need to
# capture \2-1 above, and can use a better-golfed form of the division.
(?=
( # \8 = tail / \2
(x*) # \9 = \8-1
(?=\2\9+$)
x
)
(\8*$) # \10 = tool to make tail = \8
)
\10 # tail = \8
)*
x$ # Require that the end result is 1
)
# Assert that there exists no trio of prime numbers such that N is divisible by the
# smallest and largest prime but not the middle prime.
(?!
( # \11 = a factor of N
( # \12 = a non-factor of N between \11 and \13
(x+)(?=\13+$) # \13 = a factor of N smaller than \11
(x+) # \14 = tool (with \15) to make tail = \13
)
(?!\12+$)
(x+) # \15 = tool to make tail = \12
)
\11*(?=\11$) # tail = \11
# Assert that \11, \12, and \13 are all prime
(?!
(\15\14?)? # tail = either \11, \12, or \13
((xx+)\18+|x?)$
)
)
* Ainda é mais limpo com a cabeça molecular, sem nenhum caso especial para N estar livre de quadrados. Isso elimina 6 bytes, produzindo uma solução de 195 187 183 bytes :
^(?=(?*(x+))\1*(?=\1$)((?=(xx+?)\3*$)(?=(x+)(\4+$))\5(?!\3*$))*x$)(?=((?=((x*)(?=\1\8+$)x)(\7*$))\9)*x$)(?!(((x+)(?=\12+$)(x+))(?!\11+$)(x+))\10*(?=\10$)(?!(\14\13?)?((xx+)\17+|x?)$))
# For the purposes of these comments, the input number = N.
^
# Assert that all of N's prime factors are of equal multiplicity
# Step 1: Find Q, the largest square-free factor of N (which will also be the smallest
# factor of N that has all the same prime factors as N) and put it in \1.
(?=
(?*(x+)) # \1 = proposed factor of N
\1*(?=\1$) # Assert that \1 is a factor of N; tail = \1
# Assert that tail is square-free (its prime factors all have single multiplicity)
(
(?=(xx+?)\3*$) # \3 = smallest prime factor of tail
(?=(x+)(\4+$)) # \4 = tail / \3 (implicitly); \5 = tool to make tail = \4
\5 # tail = \4
(?!\3*$) # Assert that tail is no longer divisible by \3, i.e. that that
# prime factor was of exactly single multiplicity.
)*x$
)
# Step 2: Require that the result of repeatedly dividing tail by \1 is 1.
(?=
(
# In the following division calculation, we can skip the test for divisibility
# by \1-1 because it's guaranteed that \2 <= \8. As a result, we did not need to
# capture \1-1 above, and can use a better-golfed form of the division.
(?=
( # \7 = tail / \1
(x*) # \8 = \7-1
(?=\1\8+$)
x
)
(\7*$) # \9 = tool to make tail = \7
)
\9 # tail = \7
)*
x$ # Require that the end result is 1
)
# Assert that there exists no trio of prime numbers such that N is divisible by the
# smallest and largest prime but not the middle prime.
(?!
( # \10 = a factor of N
( # \11 = a non-factor of N between \10 and \12
(x+)(?=\12+$) # \12 = a factor of N smaller than \10
(x+) # \13 = tool (with \14) to make tail = \12
)
(?!\11+$)
(x+) # \14 = tool to make tail = \11
)
\10*(?=\10$) # tail = \10
# Assert that \10, \11, and \12 are all prime
(?!
(\14\13?)? # tail = either \10, \11, or \12
((xx+)\17+|x?)$
)
)
Aqui é portado para lookbehind de comprimento variável:
Regex (ECMAScript 2018), 198 195 194 186 182 bytes
^(?=(x+)(?=\1*$)(?<=^x((?<!^\5*)\3(?<=(^\4+)(x+))(?<=^\5*(x+?x)))*))((?=((x*)(?=\1\8+$)x)(\7*$))\9)*x$(?<!(?!(\14\16?)?((xx+)\12+|x?)$)(?<=^\13+)((x+)(?<!^\15+)((x+)(?<=^\17+)(x+))))
Experimente online!
# For the purposes of these comments, the input number = N.
^
# Assert that all of N's prime factors are of equal multiplicity
# Step 1: Find Q, the largest square-free factor of N (which will also be the smallest
# factor of N that has all the same prime factors as N) and put it in \1.
(?=
(x+)(?=\1*$) # \1 = factor of N; head = \1
(?<= # This is evaluated right-to-left, so please read bottom to top.
^x
(
(?<!^\5*) # Assert that head is no longer divisible by \6, i.e. that
# that prime factor was of exactly single multiplicity.
\3 # head = \4
(?<=(^\4+)(x+)) # \4 = head / \5 (implicitly); \3 = tool to make head = \4
(?<=^\5*(x+?x)) # \5 = smallest prime factor of head
)*
)
)
# Step 2: Require that the result of repeatedly dividing tail by \1 is 1.
(
# In the following division calculation, we can skip the test for divisibility
# by \1-1 because it's guaranteed that \2 <= \8. As a result, we did not need to
# capture \1-1 above, and can use a better-golfed form of the division.
(?=
( # \7 = tail / \1
(x*) # \8 = \7-1
(?=\1\8+$)
x
)
(\7*$) # \9 = tool to make tail = \7
)
\9 # tail = \7
)*
x$ # Require that the end result is 1
# Assert that there exists no trio of prime numbers such that N is divisible by the
# smallest and largest prime but not the middle prime.
# This is evaluated right-to-left, so please read bottom to top, but switch back to
# reading top to bottom at the negative lookahead.
(?<!
# Assert that \13, \15, and \17 are all prime.
(?!
(\14\16?)? # tail = either \13, \15, or \17
((xx+)\12+|x?)$
)
(?<=^\13+)
( # tail = \13
(x+) # \14 = tool to make tail = \15
(?<!^\15+)
(
(x+) # \16 = tool (with \14) to make tail = \17
(?<=^\17+)(x+) # \17 = a factor of N smaller than \13
) # \15 = a non-factor of N between \13 and \17
) # \13 = a factor of N
)