Os vermes de Paterson são um tipo de autômato celular que existe em uma grade triangular infinita e, a cada passo, eles se voltam em alguma direção e movem uma unidade. Suas propriedades definidoras são que eles nunca podem percorrer o mesmo local duas vezes e, sempre que encontram o mesmo ambiente, tomam a mesma decisão. Um verme sempre "vê" de sua própria perspectiva, com a cauda localizada em 3 e a cabeça localizada no centro deste hexágono:
Por exemplo, considere o worm com as regras:
- Se 0, 1, 2, 4 e 5 estiverem em branco, vá na direção 2
- Se 0, 1, 4 e 5 estiverem em branco e 2 estiver preenchido, mova na direção 0
- Se 0, 1 e 5 estiverem em branco e 2 e 4 estiverem preenchidos, mova na direção 0
Isso resulta no seguinte caminho (da Wikipedia):
Se o verme se encontra em uma situação em que todos os arredores estão cheios, ele termina.
Entrada
Uma lista de números. O enésimo número indica que decisão o worm deve tomar na enésima nova situação que encontra onde deve tomar uma decisão. Observe que, se todos, exceto um de seus arredores, estiverem preenchidos, ele deverá se mover na única direção que estiver vazia. Isso não conta como uma "decisão" e não consome um número. Para gerar o exemplo de worm mostrado acima, a entrada seria [2, 0, 0]
. A entrada é garantida para produzir um worm que termina e não refaz seu caminho, e a entrada nunca será muito curta.
Resultado
Crie uma lista de coordenadas indicando onde está a cabeça do worm, começando em (1, 0)
. Consideraremos mover para cima e para a direita como uma diminuição apenas no valor y, mas mover para cima e para a esquerda será uma diminuição no valor x e uma diminuição no valor y. Por exemplo, a saída do caminho para a entrada de exemplo é
(1, 0), (1, 1), (0, 0), (-1, -1), (0, -1), (0, 0), (0, 1), (-1, 0), (0, 0)
Casos de teste
Você pode usar o snippet javascript para executar testes também.
[2,0,0]: (1,0),(1,1),(0,0),(-1,-1),(0,-1),(0,0),(0,1),(-1,0),(0,0)
[1,0,4,0,1,5]: (1,0),(2,1),(2,2),(1,2),(0,1),(0,0),(0,-1),(1,-1),(2,0),(2,1),(3,1),(4,2),(4,3),(3,3),(2,2),(1,1),(1,0),(2,0),(3,1),(3,0),(4,0),(5,1),(5,2),(4,2),(3,2),(2,1),(1,1),(0,0),(-1,0),(-2,-1),(-2,-2),(-1,-2),(0,-1),(1,0),(1,-1),(2,-1),(3,0),(4,1),(4,2),(5,3),(5,4),(4,4),(3,3),(3,4),(2,4),(1,3),(1,2),(1,1),(0,1),(-1,0),(-1,1),(-2,1),(-3,0),(-3,-1),(-2,-1),(-1,-1),(0,0)
[1,0,5,1]: (1,0),(2,1),(2,2),(1,2),(0,1),(0,0),(0,-1),(1,-1),(2,0),(2,1),(3,2),(3,3),(2,3),(1,2),(0,2),(-1,1),(-1,0),(0,0),(1,1),(1,2),(1,3),(0,3),(-1,2),(-1,1),(-2,0),(-2,-1),(-1,-1),(0,0)
[2,0,1,0]: (1,0),(1,1),(0,0),(-1,-1),(0,-1),(0,0),(-1,0),(-1,-1),(-1,-2),(0,-1),(1,0),(2,1),(1,1),(0,1),(0,0)
O seguinte programa montado às pressas (possivelmente com bugs) exibirá os worms:
var canvas = document.querySelector("canvas");
var ctx = canvas.getContext("2d");
var input, memory;
var log = str => {
console.log(str);
document.querySelector("textarea").value += str + "\n";
};
var orientations = [
[1, 0],
[1, 1],
[0, 1],
[-1, 0],
[-1, -1],
[0, -1]
];
var arena = {
grid: [[[1, 0, 0]]],
maxX: 1,
maxY: 0,
expandGrid: function() {
var grid = this.grid;
var newWidth = grid[0].length + 2,
newHeight = grid.length + 2;
var createRow = () => {
var result = [];
for (let i = 0; i < newWidth; ++i) result.push([0, 0, 0]);
return result;
};
for (let row of grid) {
row.push([0, 0, 0]);
row.unshift([0, 0, 0]);
};
grid.push(createRow());
grid.unshift(createRow());
},
gridWidth: function() {
return this.grid[0].length
},
gridHeight: function() {
return this.grid.length
},
get: function(x, y) {
var colOffset = Math.floor(this.gridWidth() / 2),
rowOffset = Math.floor(this.gridHeight() / 2);
return this.grid[y + rowOffset][x + colOffset];
},
isAtEnd: function(x, y) {
var colOffset = Math.floor(this.gridWidth() / 2),
rowOffset = Math.floor(this.gridHeight() / 2);
return x === -colOffset || x + colOffset + 1 === this.gridWidth() ||
y === -rowOffset || y + rowOffset + 1 === this.gridHeight();
},
getEdge: function(x, y, o) {
if (o % 2 === 0) return this.get(x, y)[o / 2];
else {
let a, b;
[a, b] = orientations[(o + 3) % 6];
return this.get(x - a, y - b)[((o + 3) % 6) / 2];
}
},
setEdge: function(x, y, o) {
if (Math.abs(x) > this.maxX) this.maxX = Math.abs(x);
if (Math.abs(y) > this.maxY) this.maxY = Math.abs(y);
if (o % 2 === 0) {
if (this.get(x, y)[o / 2]) throw new Error("Path already taken");
this.get(x, y)[o / 2] = 1;
} else {
let a, b;
[a, b] = orientations[(o + 3) % 6];
if (this.get(x - a, y - b)[((o + 3) % 6) / 2]) throw new Error("Path already taken");
this.get(x - a, y - b)[((o + 3) % 6) / 2] = 1;
}
}
};
var drawGrid = function(area) {
var width = canvas.width,
height = canvas.height;
ctx.clearRect(0, 0, width, height);
var gridWidth = arena.gridWidth(),
gridHeight = arena.gridHeight();
var triangleLen = Math.floor(Math.min(
width / (arena.maxX * 2 + arena.maxY),
height / (arena.maxY * Math.sqrt(3)),
width / 4
));
var convert = (x, y) => [(x - y / 2) * triangleLen, triangleLen * y * Math.sqrt(3) / 2];
var drawCirc = function(x, y) {
var a, b;
ctx.beginPath();
[a, b] = convert(x, y);
ctx.arc(a, b, 5, 0, 2 * Math.PI);
ctx.fill();
};
ctx.fillStyle = "black";
for (let y = 0; triangleLen * y * Math.sqrt(3) / 2 < height; ++y) {
for (let x = Math.floor(y / 2); triangleLen * (x - y / 2) < width; ++x) {
drawCirc(x, y);
}
};
var drawLine = function(a, b, c, d) {
var x, y;
ctx.beginPath();
[x, y] = convert(a, b);
ctx.moveTo(x, y);
[x, y] = convert(a + c, b + d);
ctx.lineTo(x, y);
ctx.stroke();
};
var centerY = Math.round(height / (triangleLen * Math.sqrt(3)));
var centerX = Math.round(width / (2 * triangleLen) + centerY / 2);
ctx.fillStyle = "red";
drawCirc(centerX, centerY);
for (let row = -(gridHeight - 1) / 2; row < (gridHeight + 1) / 2; ++row) {
for (let col = -(gridWidth - 1) / 2; col < (gridWidth + 1) / 2; ++col) {
let lines = arena.get(col, row);
for (let j = 0; j < lines.length; ++j) {
if (lines[j]) {
let or = orientations[2 * j];
drawLine(col + centerX, row + centerY, or[0], or[1]);
}
}
}
}
};
var step = function(x, y, absoluteOrientation) {
log('(' + x + ',' + y + ')');
var surroundings = 0;
for (let i = 0; i < 6; ++i) {
if (arena.getEdge(x, y, (absoluteOrientation + i) % 6)) {
surroundings |= (1 << i);
}
}
if (surroundings == 63) {
console.log("Done!");
return;
}
var action;
if (memory[surroundings] !== undefined)
action = memory[surroundings];
else {
action = input.shift();
memory[surroundings] = action;
}
absoluteOrientation = (absoluteOrientation + action) % 6;
arena.setEdge(x, y, absoluteOrientation);
var or = orientations[absoluteOrientation];
x += or[0];
y += or[1];
if (arena.isAtEnd(x, y)) arena.expandGrid();
drawGrid(arena);
setTimeout(function() {
step(x, y, absoluteOrientation);
}, parseFloat(document.querySelector("input[type=number]").value));
};
var go = function() {
input = document.querySelector("input[type=text]").value.split(",").map(x => parseInt(x, 10));
arena.grid = [[[1, 0, 0]]];
arena.maxX = 1;
arena.maxY = 0;
memory = {};
for (let i = 0; i < 6; ++i) {
memory[(~(1 << i)) & 63] = i;
}
arena.expandGrid();
arena.expandGrid();
step(1, 0, 0);
};
document.querySelector("button").onclick = go;
canvas {
border: 1px solid black;
}
Input: <input type="text" placeholder="Comma separated input"><br />
Delay (ms): <input type="number" placeholder="delay" value="500"/><button>Go</button><br />
<canvas width="500" height="400"></canvas><br />
<textarea></textarea>
[1,0,4,2,0,1,5]
.)