A sequência de Sixers é um nome que pode ser atribuído à sequência A087409 . Eu aprendi sobre essa sequência em um vídeo do Numberphile e ela pode ser construída da seguinte maneira:
Primeiro, pegue os múltiplos de 6, escritos na base 10:
6, 12, 18, 24, 30, 36, ...
Em seguida, concatene os números em um fluxo de dígitos:
61218243036...
Por fim, reagrupe o fluxo em pares e interprete cada um como um número inteiro:
61, 21, 82, 43, 3, ...
À medida que agrupamos os números em pares, o número máximo na sequência será 99, e todos os números inteiros não negativos menores que 100 são representados na sequência. Esse desafio é encontrar o índice da primeira instância de um número na sequência de Sixers.
Entrada
Um número inteiro no intervalo [0-99]
. Você não precisa contabilizar números fora desse intervalo e sua solução pode ter algum comportamento se essa entrada for fornecida.
Resultado
O índice da primeira ocorrência do número de entrada na sequência de Sixers. Isso pode ser indexado em 0 ou 1; diga o que você está usando em sua resposta.
Regras
- O procedimento para gerar a sequência observada na introdução é apenas para fins ilustrativos. Você pode usar qualquer método que desejar, desde que os resultados sejam os mesmos.
- Você pode enviar programas ou funções completos.
- Quaisquer métodos sensíveis de entrada e saída são permitidos.
- As brechas padrão não são permitidas.
- Links para testar seu código online são recomendados!
- Isso é código-golfe , então a resposta mais curta em cada idioma vence!
Casos de teste
Aqui está uma lista de todas as entradas e saídas, no formato input, 0-indexed output, 1-indexed output
.
0 241 242
1 21 22
2 16 17
3 4 5
4 96 97
5 126 127
6 9 10
7 171 172
8 201 202
9 14 15
10 17 18
11 277 278
12 20 21
13 23 24
14 19 20
15 29 30
16 32 33
17 297 298
18 35 36
19 38 39
20 41 42
21 1 2
22 46 47
23 69 70
24 6 7
25 53 54
26 22 23
27 11 12
28 62 63
29 219 220
30 65 66
31 68 69
32 71 72
33 74 75
34 49 50
35 357 358
36 80 81
37 83 84
38 25 26
39 89 90
40 92 93
41 27 28
42 42 43
43 3 4
44 101 102
45 104 105
46 8 9
47 177 178
48 110 111
49 13 14
50 28 29
51 119 120
52 122 123
53 417 418
54 79 80
55 128 129
56 131 132
57 134 135
58 55 56
59 437 438
60 140 141
61 0 1
62 31 32
63 75 76
64 5 6
65 120 121
66 82 83
67 10 11
68 161 162
69 164 165
70 58 59
71 477 478
72 170 171
73 173 174
74 34 35
75 179 180
76 182 183
77 497 498
78 85 86
79 188 189
80 191 192
81 18 19
82 2 3
83 78 79
84 93 94
85 7 8
86 37 38
87 168 169
88 12 13
89 228 229
90 88 89
91 218 219
92 221 222
93 224 225
94 64 65
95 557 558
96 230 231
97 233 234
98 40 41
99 239 240
00
01
02
6, 2*6, 3*6,..., 325*6
é suficiente para gerar todos os valores possíveis