Haskell , 1165 1065 1053 bytes
Bytes economizados graças a Leo Tenenbaum
n=Nothing
x?y=Just(x,y)
o(x,y)=x<0||y<0||x>7||y>7
m#k@(x,y)|o k=n|1>0=m!!x!!y
z(x,y)m p(a,b)|o(x+a,y+b)=1<0|Just g<-m#(x+a,y+b)=elem g[(p,0),(5,0)]|1>0=z(x+a,y+b)m p(a,b)
t(x,y)p(a,b)m|o(x+a,y+b)=[]|g<-(x+a,y+b)=(g%p)m++do[0|m#g==n];t g p(a,b)m
c m|(x,y):_<-[(a,b)|a<-u,b<-u,m#(a,b)==6?1],k<-z(x,y)m=or$[m#(x+a,y+b)==6?0|a<-0:s,b<-0:s]++do a<-s;[k 3(a,b)|b<-s]++(k 2<$>[(a,0),(0,a)])++[m#l==4?0|b<-[2,-2],l<-[(x+a,y+b),(x+b,y+a)]]++[m#(x-1,y+a)==p?0|p<-[0,1]]
c m=1>0
(k%p)m=[[[([p|a==k]++[m#a])!!0|a<-(,)b<$>u]|b<-u]|not$o k]
w(Just(_,1))=1<0
w x=1>0
m!u@(x,y)|g<-m#u,Just(q,1)<-g,v<-((u%n)m>>=),r<-v.t u g,k<-(do[0|n==m#(x+1,y)];(u%n)m>>=(x+1,y)%g)++(do a<-s;[0|n<m#(x+1,y+a)];v$(x+1,y+a)%g)++(do[0|(x,n,n)==(1,m#(x+1,y),m#(x+2,y))];v$(x+2,y)%g)++(do a<-s;[0|1?0==m#(x,y+a)];v((x,y+a)%n)>>=(x+1,y+a)%g)=[k,k,do a<-s;[(a,0),(0,a)]>>=r,do a<-s;b<-s;r(a,b),do a<-s;b<-[2,-2];l<-[(x+a,y+b),(x+b,y+a)];v$l%g,do a<-0:s;b<-[0|a/=0]++s;r(a,b),do a<-[x-1..x+1];b<-[y-1..y+1];[0|w$m#(a,b)];v$(a,b)%g]!!q
m!u=[]
u=[0..7]
s=[1,-1]
q m=all c$m:do a<-u;b<-u;m!(a,b)
Experimente online!
Isso não está exatamente bem no momento, mas é um começo. Com alguma ajuda ao longo do caminho, agora joguei isso de forma bastante agressiva (e corrigi um erro ao longo do caminho).
A única coisa questionável que isso faz é que ele pressupõe que, exceto por um rei ou um peão de passagem, você nunca poderá sair do controle capturando uma de suas próprias peças. No xadrez, você não tem permissão para fazer essa jogada, mas meu programa considera essas jogadas para economizar bytes, pressupondo que, se você estiver checado, isso nunca poderá tirar você disso.
Essa suposição é válida porque tais movimentos
Não é possível capturar a peça que está atacando o rei, pois a peça que eles capturam é preta.
Não é possível bloquear o caminho da peça que está atacando o rei, pois a peça preta capturada já estaria fazendo isso.
Também acrescentamos a estipulação adicional de que, se você não tem rei, está em xeque.
Esse programa também pressupõe que, se houver um peão que possa ser capturado passant, então o peão foi a última peça a ser movida e essa foi uma jogada legal. Isso ocorre porque o programa não verifica se o quadrado para o qual move o peão preto está vazio; portanto, se houver uma peça, as coisas podem ficar um pouco esquisitas. No entanto, isso não pode ser obtido se a última jogada foi uma jogada legal e, além disso, não pode ser representada na FEN . Portanto, essa suposição parece bastante sólida.
Aqui está a minha versão "ungolfed" para referência:
import Control.Monad
out(x,y)=x<0||y<0||x>7||y>7
at b (x,y)
|out(x,y)=Nothing
|otherwise=(b!!x)!!y
inLine (x,y) ps m (a,b)
| out (x+a,y+b) = False
| elem (m `at` (x+a,y+b)) $ Just <$> ps = True
| m `at` (x+a,y+b) == Nothing = inLine (x+a,y+b) ps m (a,b)
| otherwise = False
goLine (x,y) p (a,b)m
| out (x+a,y+b) = []
| otherwise = case m `at` (x+a,y+b) of
-- Just (n,1) -> []
Just (n,_) -> set(x+a,y+b)p m
Nothing -> set(x+a,y+b)p m ++ goLine(x+a,y+b)p(a,b)m
checkBishop (x,y) m=or[inLine(x,y)[(3,0),(5,0)]m(a,b)|a<-[1,-1],b<-[1,-1]]
checkRook (x,y) m=or$do
a<-[1,-1]
inLine(x,y)[(2,0),(5,0)]m<$>[(a,0),(0,a)]
checkKnight (x,y) m=any((==Just(4,0)).(at m))$do
a<-[1,-1]
b<-[2,-2]
[(x+a,y+b),(x+b,y+a)]
checkPawn (x,y) m=or[at m a==Just(p,0)|a<-[(x-1,y+1),(x-1,y-1)],p<-[0,1]]
checkKing (x,y) m=or[at m(a,b)==Just(6,0)|a<-[x-1..x+1],b<-[y-1..y+1]]
check m
| u:_<-[(a,b)|a<-[0..7],b<-[0..7],(m!!a)!!b==Just(6,1)] =
checkBishop u m ||
checkRook u m ||
checkKnight u m ||
checkPawn u m ||
checkKing u m
| otherwise = True
set (x,y) p m=[[[head$[p|(a,b)==(y,x)]++[(m!!b)!!a]|a<-[0..7]]|b<-[0..7]]|not$out(x,y)]
white(Just(n,0))=True
white x=False
moves m (x,y)
|g<-m `at` (x,y)=case g of
Just(2,1) -> do
a<-[1,-1]
b<-[(a,0),(0,a)]
set(x,y)Nothing m>>=goLine (x,y) g b
Just(3,1) -> do
a<-[1,-1]
b<-[1,-1]
set(x,y)Nothing m>>=goLine (x,y) g(a,b)
Just(4,1) -> do
n<-set(x,y)Nothing m
a<-[1,-1]
b<-[2,-2]
l<-[(x+a,y+b),(x+b,y+a)]
-- guard$white$n `at` l
set l g n
Just(5,1) -> do
a<-[1,-1]
c<-[(a,0),(0,a),(a,1),(a,-1)]
set(x,y)Nothing m>>=goLine (x,y) g c
Just(6,1) -> do
a<-[x-1..y+1]
b<-[x-1..y+1]
guard$white(m `at`(a,b))||Nothing==m`at`(a,b)
set(x,y)Nothing m>>=set(a,b)g
Just(n,1) -> (do
guard$Nothing==m `at` (x+1,y)
set(x,y)Nothing m>>=set(x+1,y)g) ++ (do
a<-[1,-1]
guard$white$m`at`(x+1,y+a)
set(x,y)Nothing m>>=set(x+1,y+a)g) ++ (do
guard$(x,Nothing,Nothing)==(1,m`at`(x+1,y),m`at`(x+1,y))
set(x,y)Nothing m>>=set(x+2,y)g) ++ (do
a<-[1,-1]
guard$Just(1,0)==m`at`(x,y+a)
set(x,y)Nothing m>>=set(x,y+a)Nothing>>=set(x+1,y+a)g)
_ -> []
checkmate m=all check$m:do
a<-[0..7]
b<-[0..7]
moves m(a,b)
Experimente online!