Programação Pac-Man


31

Programa Pac-Man

Configuração

Você joga como Pac-Man. Você deseja coletar pellets, frutas e pellets potentes antes de qualquer outra pessoa, evitando fantasmas.

Regras

  1. Todo Pac-Man válido estará em um único labirinto. O jogador com a maior pontuação acumulada após 10 jogos vencerá.
  2. Um jogo termina quando todos os Pac-Men estão mortos, todos os pellets desaparecem ou se passam 500 turnos
  3. Se um Pac-Man morre, ele continua a jogar como um fantasma
  4. Comer um pellet Power fará com que você fique invencível por 10 turnos e permite que você coma Ghosts
  5. Comer um fantasma teleportará o fantasma para um local aleatório
  6. Fantasmas não podem comer nada, exceto Pac-Men, e não recebem pontos
  7. Ao comer os seguintes itens como Pac-Man, você obterá os seguintes pontos:
    1. Pellet: 10
    2. Pelota de poder: 50
    3. Fruta: 100
    4. Fantasma: 200

O labirinto

Se houver n Pac-Men, em seguida, um labirinto de tamanho sqrt(n)*10por sqrt(n)*10será gerada usando o algoritmo de Prim (devido à sua baixo fator de rio), então trançado completamente, dando preferência a becos sem saída já existentes. Além disso, essa trança pode ser feita através das bordas, para que haja alguns caminhos de cima para baixo e da esquerda para a direita.

Haverá:

  1. 2n Fantasmas
  2. 4n Power Pellets
  3. 2n Fruta
  4. n Pac-Men em locais onde os quadrados dos vizinhos conectados estão vazios.
  5. Todos os pontos vazios restantes serão preenchidos com pellets

Portanto, um mapa inicial com 10 jogadores será mais ou menos assim (Ghosts = verde, Pellets = aqua, fruta = vermelho, Pac-Man = amarelo):

Labirinto

Entrada / Saída

No início do jogo , você receberá uma única linha de caracteres, representando as paredes em todos os quadrados do mapa. Para cada quadrado, começando com o canto superior esquerdo, movendo para a direita e passando para a próxima linha, você receberá um dígito hexadecimal representando a situação da parede:

0: No walls
1: North wall
2: East wall
3: East & North wall
4: South wall
5: South & North wall
6: South & East wall
7: Won't occur
8: West wall
9: West & North wall
A: West & East wall
B: Won't occur
C: West & South wall
D: Won't occur
E: Won't occur
F: Won't occur

Simplificando, Norte = 1, Leste = 2, Sul = 4 e Oeste = 8, somados.

Então, a cada turno , você receberá sua posição atual e os itens em sua linha de visão (se você é um Pac-Man. Todos os fantasmas recebem todos os quadrados de -5 a +5 de sua posição relativa). Sua linha de visão será baseada na direção em que você viajou no último turno. Se você viajou para o norte, receberá todos os quadrados diretamente ao norte, leste e oeste de você até que uma parede interrompa sua vista e um único quadrado noroeste e nordeste, se nenhuma parede interromper sua vista. Se você optar por não se mover, você receberá os quadrados nas 8 direções.

Para o visual, Isignifica invisível, Vsignifica visível, Psignifica Pac-Man (assumindo que o Pac-Man esteja voltado para o norte):

|I I|V|I|
|I V|V V|
|V V P|I|
|I I|I|I|

Cada quadrado será dado por uma coordenada e, em seguida, seu conteúdo. Seu conteúdo é representado pelos seguintes caracteres:

  1. P: 1 ou mais Pac-Man
  2. G: 1 ou mais fantasmas
  3. o: Pelota
  4. O: Pelota do poder
  5. F: Pedaço de fruta
  6. X: Nada

Se houver um fantasma e mais alguma coisa em um quadrado, Gserá retornado.

Portanto, se você estivesse no quadrado 23,70, você acabou de se mudar para o norte, o quadrado acima de você é um beco sem saída e contém um pellet de energia, e você tem paredes em ambos os lados, sua entrada seria:

23,70X 22,70O

No seu quadrado atual, ele mostrará Gse você é um fantasma, Pse houver outro Pac-Man no seu quadrado, caso contrário, umX

Em seguida, você retornará os seguintes itens via STDOUT:

Um único caractere representando uma direção ( North, East, South, West ou XStay).

Antes de passar em uma direção, você também pode passar em qualquer coordenada como x,ye as paredes desse quadrado serão passadas de volta (como descrito acima)

O programa deve estar em execução contínua até que Qseja transmitido a ele via STDIN. Os programas serão reiniciados para cada jogo.

Não é permitido acessar outras informações fora do que é transmitido ao STDIN (incluindo outros dados do Pac-Men ou os dados mantidos pelo programa host).

Se você não retornar um movimento dentro de 1000 ms, o programa será encerrado (executando na minha máquina Win8 bastante decente). Você terá 2 segundos para processar o layout inicial do labirinto quando for fornecido

O host será escrito em Python, e o código para testar seu bot está disponível.

Casos excepcionais

  • Se vários Pac-Men terminarem no mesmo local, não obtenha o conteúdo do quadrado atual, a menos que exatamente 1 deles seja invencível; nesse caso, o invencível Pac-Man receberá o pellet.
  • Um Pac-Man comido por um fantasma não será teleportado para outro lugar. Se dois Pac-Men estiverem em um quadrado e um for invencível, o fantasma será teleportado.
  • Ser teleportado como um fantasma impede que você se mova por 1 turno. Ao jogar como um fantasma, você simplesmente terá sua vez ignorada
  • Tentar mover-se através de uma parede será interpretado como "Permanecer"
  • Cada um dos fantasmas iniciais receberá um dos quatro traços de personalidade, conforme descrito aqui , com a seguinte modificação:

    1. Os erros descritos não serão duplicados
    2. Todos eles estarão ativos desde o início
    3. Eles são vulneráveis ​​apenas ao jogador que comeu o pellet
    4. Eles mudarão indefinidamente de dispersão para perseguição, cada um com um número fixo de turnos antes da troca
    5. Ao mudar para perseguir, eles encontrarão o Pac-Man mais próximo a perseguir e perseguirão esse Pac-Man pela duração de sua perseguição. (Se houver um empate por proximidade, o Pac-Man será escolhido pseudo-aleatoriamente)
    6. Blinky não vai acelerar
    7. Inky escolherá o fantasma mais próximo para basear seus cálculos depois de mudar para perseguir.
    8. Clyde encontrará todos os jogadores a 8 quadrados de distância e seguirá o jogador mais distante.
    9. Todos os fantasmas, exceto Clyde, não terão como alvo um jogador a mais de 5 quadrados de distância

Aceitarei código compilável de um idioma padrão ou um .exe (com o código que o acompanha).

Dicas de programação

Você pode com o meu controlador. Você precisa colocar uma pasta / bots / your_bot_name / no mesmo diretório que o programa. Dentro da pasta, você precisa adicionar um command.txt contendo um comando para executar seu programa (ex python my_bot.py:) e seu bot.

O código do controlador está no Github (código Python, requer Pygame se você quiser gráficos). Testado no Windows e Linux

PONTUAÇÃO

ghostbuster: 72,840 pontos

pathy: 54.570 pontos

míope: 50.820 pontos

evitarinteração: 23,580 pontos

físico: 18,330 pontos

randomwalk: 7.760 pontos

dumbpac: 4.880 pontos


9
+1. Esta é a primeira vez que vejo a palavra "Pacmen"
justhalf

5
Parece um desafio divertido! A propósito: (1) Na verdade, eles são chamados de "energizadores" e não de "pellets de energia". (2) O "M" no Pac-Man está em maiúscula e é hifenizado como "Pac-Man" e não "Pacman" ou "PacMan". Aqui está um ótimo recurso para obter informações sobre o Pac-Man: home.comcast.net/~jpittman2/pacman/pacmandossier.html
Todd Lehman

2
Qualquer pessoa que trabalhe nesse desafio deve se juntar a nós na sala de bate-papo do codegolf. chat.stackexchange.com/rooms/240/the-nineteenth-byte
Sparr

1
Está bem. O controlador agora funciona no Windows e Linux, mas congelará no Windows se o seu bot não responder.
Nathan Merrill

1
Sou daltônico e não consigo distinguir os PacMen dos Ghosts, podemos mudar as cores?
Moop

Respostas:


8

GhostBuster - Python

Seleciona um ponto aleatório no mapa, usa o algoritmo A * para encontrar o melhor caminho a seguir. Quando chegar ao seu destino, ele escolherá um novo e continuará. Ele tentará evitar fantasmas, mas com o FOV limitado, ocasionalmente os encontrará. Evitará andar em locais já visitados.

  • Adicionado lógica para o fantasma. Seleciona um ponto aleatório próximo (<8) e se move para lá, desconsiderando outras pontuações além de pacmen
  • Adicionado lógica de invencibilidade
  • Valores de pontos ajustados dos quadrados
  • Bug (se ele é bom demais e come todos os pellets, o jogo congela por algum motivo)

Usa algum código de Sparr, obrigado pela lógica.


Windows 7, Visual Studios com ferramentas Python. Deve funcionar em caixas linux.

#!/usr/bin/env python

import os
import re
import sys
import math
import random

sys.stdout = os.fdopen(sys.stdout.fileno(), 'w', 0) # automatically flush stdout

P,G,o,O,F,X = 5,600,-10,-100,-100,10
PreviousSquarePenalty = 10

# read in the maze description
maze_desc = sys.stdin.readline().rstrip()
mazeSize = int(math.sqrt(len(maze_desc)))

North,East,South,West = range(4)
DIRECTIONS = ['N','E','S','W']
Euclidian,Manhattan,Chebyshev = range(3)

sign = lambda x: (1, -1)[x<0]
wrap = lambda v : v % mazeSize

class Node(object):

    def __init__(self, x, y, value):
        self.x, self.y = x,y
        self.wallValue = int(value, 16); #Base 16
        self.nodes = {}
        self.item = 'o' # Start as normal pellet

    def connect(self, otherNode, dir):    
        if dir not in self.nodes:
            self.nodes[dir] = otherNode       
            otherNode.nodes[(dir+2)%4] = self

    def distance(self, otherNode, meth = Manhattan):
        xd = abs(otherNode.x - self.x)        
        yd = abs(otherNode.y - self.y)
        xd = min(xd, mazeSize - xd)
        yd = min(yd, mazeSize - yd)
        if meth == Euclidian:
            return math.sqrt(xd * xd + yd * yd)       
        if meth == Manhattan:
            return xd + yd
        if meth == Chebyshev:      
            return max(xd, yd)

    def direction(self, otherNode):
        for key, value in self.nodes.iteritems():
            if value == otherNode:
                return DIRECTIONS[key]            
        return 'ERROR'

    def getScore(self):
        score = eval(self.item)
        for node in self.nodes.values():
            score += eval(node.item)
        return score

    def nearbyGhost(self):
        if self.item == 'G':
            return True
        for node in self.nodes.values():
            if node.item == 'G':
                return True
        return False

    def __hash__(self):  
        return  (391 + hash(self.x))*23 + hash(self.y)

    def __eq__(self, other):
        return (self.x, self.y) == (other.x, other.y)

    def __ne__(self, other):
        return (self.x, self.y) != (other.x, other.y)

    def __str__(self):
        return str(self.x)+","+str(self.y)

    def __repr__(self):
        return str(self.x)+","+str(self.y)

# Make all the nodes first
nodes = {}
i = 0
for y in range(mazeSize):
    for x in range(mazeSize):       
        nodes[x,y] = Node(x,y,maze_desc[i])  
        i+=1

# Connect all the nodes together to form the maze
for node in nodes.values():
    walls = node.wallValue
    x,y = node.x,node.y    
    if not walls&1:  
        node.connect(nodes[x,wrap(y-1)], North)
    if not walls&2:
        node.connect(nodes[wrap(x+1),y], East)
    if not walls&4:
        node.connect(nodes[x,wrap(y+1)], South)
    if not walls&8:
        node.connect(nodes[wrap(x-1),y], West)

toVisit = set(nodes.values())
currentNode = None
destinationNode = None
previousNode = None
testInvincibilty = False
invincibility = 0
isGhost = False
turns = 0

def aStar(startNode, endNode):
    openSet = set([startNode])
    closedSet = set()
    gScores = {startNode: 0}
    cameFrom = {}
    curNode = startNode  
    while openSet:
        minF = 100000000
        for node in openSet:
            g = gScores[node]
            h = node.distance(endNode)
            f = g+h
            if f < minF:
                minF = f
                curNode = node

        if curNode == endNode:
            path = []
            while curNode != startNode:
                path.insert(0, curNode)
                curNode = cameFrom[curNode]
            return path

        openSet.remove(curNode)
        closedSet.add(curNode)
        for node in curNode.nodes.values():
            if node in closedSet:
                continue
            g = gScores[curNode]
            if isGhost:
                g += 1
                if node.item == 'P':
                    g -= 10 # prefer PacMen
            else:
                s = node.getScore();
                if invincibility > 1:
                    g -= abs(s) # everything is tasty when invincible
                else:
                    g += s
                if previousNode and node == previousNode:
                    g += PreviousSquarePenalty # penalize previous square
            isBetter = False
            if node not in openSet:
                openSet.add(node)
                isBetter = True
            elif g < gScores[node]:
                isBetter = True
            if isBetter:
                gScores[node] = g
                cameFrom[node]=curNode

# regex to parse a line of input
input_re = re.compile('(?:([-\d]+),([-\d]+)([PGoOFX]?) ?)+')

while True:
    info = sys.stdin.readline().rstrip()
    if (not info) or (info == "Q"):
        break

    turns += 1

    # break a line of input up into a list of tuples (X,Y,contents)
    info = [input_re.match(item).groups() for item in info.split()]

    # update what we know about all the cells we can see
    for cell in info:
        nodes[int(cell[0]),int(cell[1])].item = cell[2]

    currentNode = nodes[int(info[0][0]),int(info[0][1])]    

    if turns == 1:
        print 'X'
        continue

    if not isGhost and currentNode.item == 'G':
        isGhost = True
        destinationNode = random.sample(nodes.values(), 1)[0]

    if isGhost:     
        while destinationNode == currentNode or currentNode.distance(destinationNode) > 8:
            destinationNode = random.sample(nodes.values(), 1)[0]
    else:     

        if invincibility > 0:
            invincibility -=  1

        if testInvincibilty:
            testInvincibilty = False
            if currentNode.item == 'X':
                invincibility += 10

        while not destinationNode or destinationNode == currentNode:
            destinationNode = random.sample(toVisit, 1)[0]

        if currentNode.item == 'X':
            toVisit.discard(currentNode)

    bestPath = aStar(currentNode, destinationNode)

    nextNode = bestPath[0]

    direction = currentNode.direction(nextNode)

    if not isGhost and nextNode.item == 'O':   
        testInvincibilty = True      

    previousNode = currentNode

    print direction

8

míope

Esse pac evita fantasmas adjacentes, a menos que ele possa comê-los, se move para frutas ou pellets adjacentes e caminha aleatoriamente como último recurso.

#!/usr/bin/env python

import os
import re
import sys
import math
import random

sys.stdout = os.fdopen(sys.stdout.fileno(), 'w', 0) # automatically flush stdout

# read in the maze description
maze_desc = sys.stdin.readline().rstrip()
maze_size = int(math.sqrt(len(maze_desc)))

# turn the maze description into an array of arrays
# [wall bitmask, item last seen in square]

def chunks(l, n):
    for i in xrange(0, len(l), n):
        yield l[i:i+n]
maze = []
for row in chunks(maze_desc, maze_size):
    maze.append([[int(c,16),'X'] for c in row])

# regex to parse a line of input
input_re = re.compile('(?:([-\d]+),([-\d]+)([PGoOFX]?) ?)+')

turn = 0
invincibility_over = 0
last_move = None

while True:
    info = sys.stdin.readline().rstrip()
    if (not info) or (info == "Q"):
        break

    # break a line of input up into a list of tuples (X,Y,contents)
    info = info.split()
    info = [input_re.match(item).groups() for item in info]

    # update what we know about all the cells we can see
    for cell in info:
        maze[int(cell[1])][int(cell[0])][1] = cell[2]

    # current location
    x = int(info[0][0])
    y = int(info[0][1])

    # which directions can we move from our current location?
    valid_directions = []
    # we might consider sitting still
    # valid_directions.append('X')
    walls = maze[y][x][0]
    if not walls&1:
        valid_directions.append('N')
    if not walls&2:
        valid_directions.append('E')
    if not walls&4:
        valid_directions.append('S')
    if not walls&8:
        valid_directions.append('W')

    # which direction has the highest value item?
    best_value = 0
    best_direction = 'X'
    for c in [(x,y-1,'N'),(x+1,y,'E'),(x,y+1,'S'),(x-1,y,'W')]:
        if c[2] in valid_directions:
            # am I a ghost?
            if maze[y][x][1] == 'G':
                if maze[c[1]%maze_size][c[0]%maze_size][1] == "P":
                    best_value = 999
                    best_direction = c[2]
            else:
                if maze[c[1]%maze_size][c[0]%maze_size][1] == 'F':
                    if best_value < 100:
                        best_value = 100
                        best_direction = c[2]
                elif maze[c[1]%maze_size][c[0]%maze_size][1] == 'O':
                    if best_value < 50:
                        best_value = 50
                        best_direction = c[2]
                elif maze[c[1]%maze_size][c[0]%maze_size][1] == 'o':
                    if best_value < 10:
                        best_value = 10
                        best_direction = c[2]
                elif maze[c[1]%maze_size][c[0]%maze_size][1] == 'G':
                    if turn < invincibility_over:
                        # eat a ghost!
                        if best_value < 200:
                            best_value = 200
                            best_direction = c[2]
                    else:
                        # avoid the ghost
                        valid_directions.remove(c[2])

    # don't turn around, wasteful and dangerous
    if last_move:
        reverse = ['N','E','S','W'][['S','W','N','E'].index(last_move)]
        if reverse in valid_directions:
            valid_directions.remove(reverse)

    if best_value == 50:
        invincibility_over = turn + 10      
    if best_direction != 'X':
        # move towards something worth points
        # sys.stderr.write("good\n")
        last_move = best_direction
    elif len(valid_directions)>0:
        # move at random, not into a wall
        # sys.stderr.write("valid\n")
        last_move = random.choice(valid_directions)
    else:
        # bad luck!
        # sys.stderr.write("bad\n")
        last_move = random.choice(['N','E','S','W'])
    print last_move

    turn += 1

6

avoider

Evite todos os fantasmas como um pacman, e todos os pacmen quando um fantasma. Tenta evitar qualquer um de seu tipo, se possível, e evita girar 180, se possível.

#!/usr/bin/env python
import os
import re
import sys
import math
import random

sys.stdout = os.fdopen(sys.stdout.fileno(), 'w', 0) # automatically flush stdout

# read in the maze description
maze_desc = sys.stdin.readline().rstrip()
maze_size = int(math.sqrt(len(maze_desc)))

# turn the maze description into an array of arrays of numbers indicating wall positions

def chunks(l, n):
    for i in xrange(0, len(l), n):
        yield l[i:i+n]
maze = []
for row in chunks(maze_desc, maze_size):
    maze.append([[int(c,16),'X'] for c in row])

# regex to parse a line of input
input_re = re.compile('(?:([-\d]+),([-\d]+)([PGoOFX]?) ?)+')

last_moved = 'X'

while True:
    info = sys.stdin.readline().rstrip()
    if (not info) or (info == "Q"):
        break

    # break a line of input up into a list of tuples (X,Y,contents)
    info = info.split()
    info = [input_re.match(item).groups() for item in info]

    # location
    x = int(info[0][0])
    y = int(info[0][1])

    # update what we know about all the cells we can see
    for cell in info:
        maze[int(cell[1])][int(cell[0])][1] = cell[2]

    # which directions can we move from our current location?
    valid_directions = []
    walls = maze[y][x][0]
    if not walls&1: 
        valid_directions.append('N')
    if not walls&2:
        valid_directions.append('E')
    if not walls&4:
        valid_directions.append('S')
    if not walls&8:
        valid_directions.append('W')

    bad_directions = []
    for c in [(x,y-1,'N'),(x+1,y,'E'),(x,y+1,'S'),(x-1,y,'W')]:
        if c[2] in valid_directions:
            # am I a ghost?
            if maze[y][x][1] == 'G':
                # it's a pacman, run. interaction is always a risk.
                if maze[c[1]%maze_size][c[0]%maze_size][1] == "P":
                    valid_directions.remove(c[2])
                # another ghost? let me move away.
                elif maze[c[1]%maze_size][c[0]%maze_size][1] == "G":
                    bad_directions.append(c[2])
            else:
                # it's a ghost, run. ghosts are evil.
                if maze[c[1]%maze_size][c[0]%maze_size][1] == "G":
                    valid_directions.remove(c[2])
                # its another pacman, move away!
                elif maze[c[1]%maze_size][c[0]%maze_size][1] == "P":
                    bad_directions.append(c[2])

    # if possible to avoid normal contact, do so
    good_directions = list(set(valid_directions) - set(bad_directions))
    if len(good_directions) > 0:
        valid_directions = good_directions

    # if not the only option, remove going backwards from valid directions
    if len(valid_directions) > 1:
        if last_moved == 'N' and 'S' in valid_directions:
            valid_directions.remove('S')
        elif last_moved == 'S' and 'N' in valid_directions:
            valid_directions.remove('N')
        elif last_moved == 'W' and 'E' in valid_directions:
            valid_directions.remove('E')
        elif 'W' in valid_directions:
            valid_directions.remove('W')

    # if possible, continue in the same direction
    if last_moved in valid_directions:
        print last_moved
    # prefer turning left/right randomly instead of turning 180
    #   backwards has been removed from valid_directions if not
    #   the only option
    elif len(valid_directions) > 0:
        last_moved=random.choice(valid_directions)
        print last_moved
    # can't move, so stay put. desire to continue in original 
    #   direction remains.
    else:
        print 'X'

Esta resposta gera um erro. Você não definiu x ou y #
Nathan Merrill

Arquivo "avoider.py", linha 42, no labirinto <module> [int (célula [1])] [int (célula [0])] [1] = célula [2] TypeError: o objeto 'int' não suporta atribuição de item
Nathan Merrill

valid_directions.remove ('W') ValueError: list.remove (x): x não está na lista
Nathan Merrill

@NathanMerrill Deve ser corrigido agora.
es1024

4

Físico, Haskell

O físico Pac-Man acredita que a lei da gravitação universal de Newton pode ajudá-lo a vencer o jogo. Então ele apenas aplica a todos os outros objetos que ele conhece durante o jogo. Como o físico é velho e tem pouca memória, ele só consegue se lembrar das coisas em 5 rodadas. Hooooly, a memória ruim realmente o ajuda a marcar melhor.

Esta resposta tem dois arquivos:

  • Main.hs, contém a parte interessante.
  • Pacman.hs, apenas um código chato para lidar com o protocolo. Você pode usá-lo para escrever sua própria solução haskell. Não contém código AI.

Oh, espere, nós temos um Makefiletambém.

Aqui vem eles:

Main.hs

import Pacman
import Data.Complex
import Data.List
import Data.Function
import qualified Data.Map as Map
import Data.Maybe
import System.IO

data DebugInfo = DebugInfo {
  debugGrid :: Grid
, debugForce :: Force
, debugAction :: Action
} deriving (Show)

data Physicist = Physicist [(Int, Object)] (Maybe DebugInfo)

type Force = Complex Double


calcForce :: Int -> Position -> PlayerType -> Object -> Force
calcForce n p1 t1 object = if d2 == 0 then 0 else base / (fromIntegral d2 ** 1.5 :+ 0)
  where
    (x1, y1) = p1
    (x2, y2) = p2
    wrap d = minimumBy (compare `on` abs) [d, n - d]
    dx = wrap $ x2 - x1
    dy = wrap $ y2 - y1
    Object t2 p2 = object
    d2 = dx * dx + dy * dy
    base = (fromIntegral dx :+ fromIntegral dy) * case t1 of
      PacmanPlayer -> case t2 of
        Pellet -> 10.0
        PowerPellet -> 200.0
        Ghost -> -500.0
        Pacman -> -20.0
        Fruit -> 100.0
        Empty -> -2.0
      GhostPlayer -> case t2 of
        Pellet -> 10.0
        PowerPellet -> 200.0
        Ghost -> -50.0
        Pacman -> 500.0
        Fruit -> 100.0
        Empty -> -2.0

instance PlayerAI Physicist where
  findAction player info = (action, player') where
    Player {
      playerType = type_
    , playerField = field
    , playerMemory = Physicist objectsWithAge _
    } = player

    n = fieldSize field
    NormalRound pos _ objects = info
    objectsWithAge' = combineObjects objectsWithAge objects
    objects' = map snd objectsWithAge'
    directionChoices = filter (not . gridHasWall grid) directions4
    totalForce = sum $ map (calcForce n pos type_) objects'
    grid = fromMaybe (error $ "invalid position " ++ show pos) $ (fieldGetGrid field) pos
    action = if magnitude totalForce < 1e-10
      then if null directionChoices
        then Stay
        else Move $ head directionChoices
      else Move $ maximumBy (compare `on` (projectForce totalForce)) directionChoices
    debugInfo = Just $ DebugInfo grid totalForce action
    player' = player {
      playerMemory = Physicist objectsWithAge' debugInfo
    }

  -- roundDebug player _ = do
  --   let Physicist objects debugInfo = playerMemory player
  --       type_ = playerType player
  --   hPrint stderr (objects, debugInfo)

combineObjects :: [(Int, Object)] -> [Object] -> [(Int, Object)]
combineObjects xs ys = Map.elems $ foldr foldFunc initMap ys where
  foldFunc object@(Object type_ pos) = Map.insert pos (0, object)
  addAge (age, object) = (age + 1, object)
  toItem (age, object@(Object _ pos)) = (pos, (age, object))
  initMap = Map.fromList . map toItem . filter filterFunc . map addAge $ xs
  filterFunc (age, object@(Object type_ _))
    | type_ == Empty = True
    | age < maxAge = True
    | otherwise = False

maxAge = 5

projectForce :: Force -> Direction -> Double
projectForce (fx :+ fy) (Direction dx dy) = fx * fromIntegral dx + fy * fromIntegral dy

main :: IO ()
main = runAI $ Physicist [] Nothing

Pacman.hs

module Pacman (
    Field(..)
  , Grid(..)
  , Direction(..)
  , directions4, directions8
  , Position
  , newPosition
  , Player(..)
  , PlayerType(..)
  , ObjectType(..)
  , Object(..)
  , RoundInfo(..)
  , Action(..)
  , runAI
  , PlayerAI(..)
  ) where

import Data.Bits
import Data.Char
import Data.List
import Data.Maybe
import qualified Data.Map as Map
import qualified System.IO as SysIO

data Field = Field {
  fieldGetGrid :: Position -> Maybe Grid
, fieldSize :: Int
}

data Grid = Grid {
  gridHasWall :: Direction -> Bool
, gridPos :: Position
}

instance Show Grid where
  show g = "Grid " ++ show (gridPos g) ++ ' ':reverse [if gridHasWall g d then '1' else '0' | d <- directions4]

data Direction = Direction Int Int
  deriving (Show, Eq)

directions4, directions8 :: [Direction]
directions4 = map (uncurry Direction) [(-1, 0), (0, 1), (1, 0), (0, -1)]
directions8 = map (uncurry Direction) $ filter (/=(0, 0)) [(dx, dy) | dx <- [-1..1], dy <- [-1..1]]

type Position = (Int, Int)
newPosition :: (Int, Int)  -> Position
newPosition = id

data Player a = Player {
  playerType :: PlayerType
, playerField :: Field
, playerRounds :: Int
, playerMemory :: a
}
data PlayerType = PacmanPlayer | GhostPlayer
  deriving (Show, Eq)

class PlayerAI a where
  onGameStart :: a -> Field -> IO ()
  onGameStart _ _ = return ()

  onGameEnd :: a -> IO ()
  onGameEnd _ = return ()

  findAction :: Player a -> RoundInfo -> (Action, Player a)

  roundDebug :: Player a -> RoundInfo -> IO ()
  roundDebug _ _ = return ()


data ObjectType = Pacman | Ghost | Fruit | Pellet | PowerPellet | Empty
  deriving (Eq, Show)
data Object = Object ObjectType Position
  deriving (Show)

data RoundInfo = EndRound | NormalRound Position PlayerType [Object]

data Action = Stay | Move Direction
  deriving (Show)


parseField :: String -> Field
parseField s = if validateField field
  then field 
  else error $ "Invalid field: " ++ show ("n", n, "s", s, "fieldMap", fieldMap)
  where
    field = Field {
      fieldGetGrid = flip Map.lookup fieldMap
    , fieldSize = n
    }
    (n : _) = [x | x <- [0..], x * x == length s]
    fieldMap = Map.fromList [
        ((i, j), parseGrid c (newPosition (i, j))) 
        | (i, row) <- zip [0..n-1] rows,
          (j, c) <- zip [0..n-1] row
      ]
    rows = reverse . snd $ foldr rowFoldHelper (s, []) [1..n]
    rowFoldHelper _ (s, rows) =
      let (row, s') = splitAt n s
      in (s', row:rows)

validateField :: Field -> Bool
validateField field@(Field { fieldGetGrid=getGrid, fieldSize=n }) = 
  all (validateGrid field) $ map (fromJust.getGrid) [(i, j) | i <- [0..n-1], j <- [0..n-1]]

validateGrid :: Field -> Grid -> Bool
validateGrid
  field@(Field { fieldGetGrid=getGrid, fieldSize=n })
  grid@(Grid { gridPos=pos })
  = all (==True) [gridHasWall grid d == gridHasWall (getNeighbour d) (reverse d) | d <- directions4]
  where
    reverse (Direction dx dy) = Direction (-dx) (-dy)
    (x, y) = pos
    getNeighbour (Direction dx dy) = fromJust . getGrid . newPosition $ (mod (x + dx) n, mod (y + dy) n)

parseGrid :: Char -> Position -> Grid
parseGrid c pos = Grid gridHasWall pos
  where
    walls = zip directions4 bits
    bits = [((x `shiftR` i) .&. 1) == 1 | i <- [0..3]]
    Just x = elemIndex (toLower c) "0123456789abcdef"
    gridHasWall d = fromMaybe (error $ "No such direction " ++ show d) $
      lookup d walls

parseRoundInfo :: String -> RoundInfo
parseRoundInfo s = if s == "Q" then EndRound else NormalRound pos playerType objects'
  where
    allObjects = map parseObject $ words s
    Object type1 pos : objects = allObjects
    objects' = if type1 `elem` [Empty, Ghost] then objects else allObjects
    playerType = case type1 of
      Ghost -> GhostPlayer
      _ -> PacmanPlayer

parseObject :: String -> Object
parseObject s = Object type_ (newPosition (x, y)) where
  (y, x) = read $ "(" ++ init s ++ ")"
  type_ = case last s of
    'P' -> Pacman
    'G' -> Ghost
    'o' -> Pellet
    'O' -> PowerPellet
    'F' -> Fruit
    'X' -> Empty
    c -> error $ "Unknown object type: " ++ [c]

sendAction :: Action -> IO ()
sendAction a = putStrLn name >> SysIO.hFlush SysIO.stdout where
  name = (:[]) $ case a of
    Stay -> 'X'
    Move d -> fromMaybe (error $ "No such direction " ++ show d) $
      lookup d $ zip directions4 "NESW"

runPlayer :: PlayerAI a => Player a -> IO ()
runPlayer player = do
  roundInfo <- return . parseRoundInfo =<< getLine
  case roundInfo of
    EndRound -> return ()
    info@(NormalRound _ type_' _) -> do
      let
        updateType :: Player a -> Player a
        updateType player = player { playerType = type_' }
        player' = updateType player
        (action, player'') = findAction player' info
      roundDebug player'' info
      sendAction action
      let 
        updateRounds :: Player a -> Player a
        updateRounds player = player { playerRounds = playerRounds player + 1}
        player''' = updateRounds player''
      runPlayer player'''

runAI :: PlayerAI a => a -> IO ()
runAI mem = do
  field <- return . parseField =<< getLine
  let player = Player {
    playerType = PacmanPlayer
  , playerField = field
  , playerRounds = 0
  , playerMemory = mem
  }
  runPlayer player

Makefile

physicist: Main.hs Pacman.hs
    ghc -O3 -Wall Main.hs -o physicist

command.txt

./physicist

Não consigo executar isso. Recebo "O nome do arquivo não corresponde ao nome do módulo: Saw Main' Expected Pacman '" quando tento fazê-lo. Além disso, para executá-lo, preciso apenas fazê-lo ou há outro comando que preciso executar?
Nathan Merrill

@ NathanMerrill Você deve primeiro fazê-lo e depois executar o physicistexecutável. Editado e adicionado command.txt, agora.
Ray

Eu estou fazendo isso. O erro que listei é lançado quando o faço. Suponha também que você esteja no diretório físico. Não seria físico ghc no command.txt?
19414 Nathan

@NathanMerrill Isso é estranho. Talvez devido ao comportamento diferente do GHC no Windows. Renomear physicist.hspara Main.hspode funcionar. Eu atualizei a resposta.
Ray

@NathanMerrill Você combinou esses dois arquivos? Isso não funcionaria.
Ray

3

dumbpac

Esse pac apenas se move aleatoriamente, sem levar em consideração o layout do labirinto, fantasmas ou outros fatores.

Perl:

#!/usr/bin/perl
local $| = 1; # auto flush!
$maze_desc = <>;
while(<>) { 
    if($_ eq "Q"){
        exit;
    }
    $move = (("N","E","S","W","X")[rand 5]);
    print ($move . "\n");
}

Python:

#!/usr/bin/env python

import os
import sys
import random

sys.stdout = os.fdopen(sys.stdout.fileno(), 'w', 0) # automatically flush stdout

maze_desc = sys.stdin.readline().rstrip()
while True:
    info = sys.stdin.readline().rstrip()
    if (not int) or (info == "Q"):
        break
    print random.choice(['N', 'E', 'S', 'W', 'X'])

3

Caminhada aleatória

esse pac caminha aleatoriamente, mas não nas paredes

#!/usr/bin/env python

import os
import re
import sys
import math
import random

sys.stdout = os.fdopen(sys.stdout.fileno(), 'w', 0) # automatically flush stdout

# read in the maze description
maze_desc = sys.stdin.readline().rstrip()
maze_size = int(math.sqrt(len(maze_desc)))

# turn the maze description into an array of arrays of numbers indicating wall positions
def chunks(l, n):
    for i in xrange(0, len(l), n):
        yield l[i:i+n]
map = []
for row in chunks(maze_desc, maze_size):
    map.append([int(c,16) for c in row])

# regex to parse a line of input
input_re = re.compile('(?:([-\d]+),([-\d]+)([PGoOFX]?) ?)+')

while True:
    info = sys.stdin.readline().rstrip()
    if (not info) or (info == "Q"):
        break

    # break a line of input up into a list of tuples (X,Y,contents)
    info = info.split()
    info = [input_re.match(item).groups() for item in info]

    # this pac only cares about its current location
    info = info[0]

    # which directions can we move from our current location?
    valid_directions = []
    # we might consider sitting still
    # valid_directions.append('X')
    walls = map[int(info[1])][int(info[0])]
    if not walls&1:
        valid_directions.append('N')
    if not walls&2:
        valid_directions.append('E')
    if not walls&4:
        valid_directions.append('S')
    if not walls&8:
        valid_directions.append('W')

    # move at random, not into a wall
    print random.choice(valid_directions)

1

Pathy, Python 3

Este bot usa muito o caminho para encontrar. Dada a posição inicial e a condição final, ele usa o BFS simples para encontrar o caminho mais curto. A localização do caminho é usada em:

  • Encontre pellets, frutas ou pellets.
  • Se é invencível, persiga fantasmas
  • Se é fantasma, persiga Pac-Men
  • Fugir de fantasmas
  • Calcular a distância entre um determinado par de posições.

command.txt

python3 pathy.py

pathy.py

import sys
import random
from collections import deque

DIRECTIONS = [(-1, 0), (0, 1), (1, 0), (0, -1)]
GHOST = 'G'
PACMAN = 'P'
FRUIT = 'F'
PELLET = 'o'
POWER_PELLET = 'O'
EMPTY = 'X'

PACMAN_PLAYER = 'pacman-player'
GHOST_PLAYER = 'ghost-player'


class Field:
    def __init__(self, s):
        n = int(.5 + len(s) ** .5)
        self.size = n
        self.mp = {(i, j): self.parse_grid(s[i * n + j]) for i in range(n) for j in range(n)}

    @staticmethod
    def parse_grid(c):
        x = int(c, 16)
        return tuple((x >> i) & 1 for i in range(4))

    def can_go_dir_id(self, pos, dir_id):
        return self.mp[pos][dir_id] == 0

    def connected_neighbours(self, pos):
        return [(d, self.go_dir_id(pos, d)) for d in range(4) if self.can_go_dir_id(pos, d)]

    def find_path(self, is_end, start):
        que = deque([start])
        prev = {start: None}
        n = self.size

        def trace_path(p):
            path = []
            while prev[p]:
                path.append(p)
                p = prev[p]
            path.reverse()
            return path

        while que:
            p = x, y = que.popleft()
            if is_end(p):
                return trace_path(p)
            for d, p1 in self.connected_neighbours(p):
                if p1 in prev:
                    continue
                prev[p1] = p
                que.append(p1)
        return None

    def go_dir_id(self, p, dir_id):
        dx, dy = DIRECTIONS[dir_id]
        x, y = p
        n = self.size
        return (x + dx) % n, (y + dy) % n

    def distance(self, p1, p2):
        return len(self.find_path((lambda p: p == p2), p1)) 

    def get_dir(self, p1, p2):
        x1, y1 = p1
        x2, y2 = p2
        return (self.dir_wrap(x2 - x1), self.dir_wrap(y2 - y1))

    def dir_wrap(self, x):
        if abs(x) > 1:
            return 1 if x < 0 else -1
        return x


class Player:
    def __init__(self, field):
        self.field = field

    def interact(self, objects):
        " return: action: None or a direction_id"
        return action

    def send(self, msg):
        print(msg)
        sys.stdout.flush()


class Pathy(Player):
    FLEE_COUNT = 8

    def __init__(self, field):
        super().__init__(field)
        self.type = PACMAN_PLAYER
        self.pos = None
        self.mem_field = {p: GHOST for p in self.field.mp}
        self.power = 0
        self.flee = 0
        self.ghost_pos = None
        self.ghost_distance = None

    @property
    def invincible(self):
        return self.type == PACMAN_PLAYER and self.power > 0

    def detect_self(self, objects):
        ((x, y), type) = objects[0]
        self.type = GHOST_PLAYER if type == GHOST else PACMAN_PLAYER
        self.pos = (x, y)

    def update_mem_field(self, objects):
        for (p, type) in objects:
            self.mem_field[p] = type

    def find_closest_ghost_pos(self, objects):
        try:
            return min(
                (p for (p, t) in objects if t == GHOST),
                key=lambda p: self.field.distance(self.pos, p)
            )
        except:
            return None

    def chase(self, types):
        is_end = lambda p: self.mem_field[p] in types
        path = self.field.find_path(is_end, self.pos)
        if not path:
            return None
        return DIRECTIONS.index(self.field.get_dir(self.pos, path[0]))

    def interact(self, objects):
        self.detect_self(objects)
        self.update_mem_field(objects)

        action = None
        if self.invincible:
            self.debug('invincible!!!')
            action = self.chase((GHOST,))
            if action is None:
                action = self.chase((POWER_PELLET,))
            if action is None:
                action = self.chase((FRUIT, PELLET,))
        elif self.type == GHOST_PLAYER:
            action = self.chase((PACMAN,))
        else:
            # PACMAN_PLAYER
            ghost_pos = self.find_closest_ghost_pos(objects)
            if ghost_pos:
                ghost_distance = self.field.distance(ghost_pos, self.pos)
                if not self.flee or ghost_distance < self.ghost_distance:
                    self.flee = self.FLEE_COUNT
                    self.ghost_distance = ghost_distance
                    self.ghost_pos = ghost_pos

            if self.flee > 0:
                self.flee -= 1
                action = max(
                    self.field.connected_neighbours(self.pos),
                    key=lambda dp: self.field.distance(dp[1], self.ghost_pos)
                )[0]
                # self.debug('flee: ghost_pos {} pos {} dir {} dist {}'.format(
                #     self.ghost_pos, self.pos, DIRECTIONS[action], self.field.distance(self.pos, self.ghost_pos)))
            else:
                self.ghost_pos = self.ghost_distance = None
                action = self.chase((POWER_PELLET, FRUIT))
                if action is None:
                    action = self.chase((PELLET,))
                if action is None:
                    action = random.choice(range(5))
                    if action > 3:
                        action = None

        # Detect power pellet
        if action is None:
            next_pos = self.pos
        else:
            next_pos = self.field.go_dir_id(self.pos, action)
        if self.mem_field[next_pos] == POWER_PELLET:
            self.power = 9
        elif self.invincible and self.mem_field[next_pos] == GHOST:
            self.debug('Got a ghost!')
        else:
            self.power = max(0, self.power - 1)
        return action

    def debug(self, *args, **kwargs):
        return
        print(*args, file=sys.stderr, **kwargs)


def start_game(player_class):
    field = Field(input())
    player = player_class(field)
    while True:
        line = input()
        if line == 'Q':
            break
        objects = [(tuple(map(int, x[:-1].split(',')))[::-1], x[-1]) for x in line.split(' ')]
        action = player.interact(objects)
        player.send('NESW'[action] if action is not None else 'X')


if __name__ == '__main__':
    start_game(Pathy)

objects = [(tuple(map(int, x[:-1].split(',')))[::-1], x[-1]) for x in line.split(' ')]lança um #ValueError: invalid literal for int() with base 10: '8o'
Nathan Merrill

O que o controlador enviou? Ele falha sempre? Funciona aqui e acho que essa afirmação deve funcionar bem.
Ray
Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.