Algoritmo de desenho de linha rápido


9

A tarefa é encontrar uma maneira de desenhar uma linha horizontal em uma matriz de números inteiros de 16 bits.

Estamos assumindo uma matriz de 256x192 pixels com 16 pixels por palavra. Uma linha é uma execução contígua de bits do conjunto (1). As linhas podem começar no meio de qualquer palavra, se sobrepor a outras palavras e terminar em qualquer palavra; eles também podem começar e terminar na mesma palavra. Eles podem não passar para a próxima linha. Dica: as palavras do meio são fáceis - basta escrever 0xffff, mas as bordas serão complicadas, assim como o caso e o início e o fim da mesma palavra. Uma função / procedimento / rotina deve ter uma coordenada x0 e x1 indicando os pontos de partida e parada horizontais, bem como uma coordenada y.

Eu me excluo disso porque eu mesmo projetei um algoritmo quase idêntico para um processador incorporado, mas estou curioso para saber como os outros lidariam com isso. Pontos de bônus por usar operações relativamente rápidas (por exemplo, uma operação de multiplicação ou ponto flutuante de 64 bits não seria rápida em uma máquina incorporada, mas uma simples troca de bits seria).


2
Codegolf é sobre código curto, não rápido ou otimizando velocidade.
precisa saber é

@hallvabo Minha solução é bastante curta, cerca de 5 linhas quando a verificação de limites e recursos adicionais (como alternar pixels em vez de defini-los.) são removidos.
Thomas O

9
@hallvabo, este site não apenas codegolf. Também se trata de otimizar a velocidade, mas nem todos os tipos de otimização: não detalhes do hardware, mas a complexidade do algoritmo.
Nakilon

@Nakilon: eu discordo. Então, por que esse site se chama Code Golf? Existem milhares de outros sites para discussões sobre complexidade algorítmica e otimização de velocidade.
hallvabo

5
@hallvabo: do FAQ - "Code Golf - Stack Exchange é para jogadores de código e para aqueles que se interessam em código de golfe (de iniciantes a especialistas) e programação de quebra-cabeças". Eu considero isso um quebra-cabeça de programação.
Thomas O

Respostas:


3

Esse código pressupõe que x0 e x1 são pontos de extremidade inclusivos e que as palavras são pouco endian (ou seja, o pixel (0,0) pode ser definido com array[0][0]|=1).

int line(word *array, int x0, int x1, int y) {
  word *line = array + (y << 4);
  word *start = line + (x0 >> 4);
  word *end = line + (x1 >> 4);
  word start_mask = (word)-1 << (x0 & 15);
  word end_mask = (unsigned word)-1 >> (15 - (x1 & 15));
  if (start == end) {
    *start |= start_mask & end_mask;
  } else {
    *start |= start_mask;
    *end |= end_mask;
    for (word *p = start + 1; p < end; p++) *p = (word)-1;
  }
}

11
Quão rápido é?
usuário desconhecido

1

Pitão

O principal truque aqui é usar uma tabela de pesquisa para armazenar máscaras de bits dos pixels. Isso economiza algumas operações. Uma tabela de 1kB não é tão grande, mesmo para uma plataforma incorporada atualmente

Se o espaço for realmente pequeno, pelo preço de alguns & 0xf, a tabela de pesquisa pode ser reduzida para apenas 64B

Esse código está em Python, mas seria simples portar para qualquer linguagem que suporte operações de bit.

Se estiver usando C, você poderia considerar desenrolar o loop usando o switchdo dispositivo de Duff . Como a linha tem no máximo 16 palavras, eu estenderia as switchpara 14 linhas e dispensaria o whileconjunto.

T=[65535, 32767, 16383, 8191, 4095, 2047, 1023, 511,
   255, 127, 63, 31, 15, 7, 3, 1]*16
U=[32768, 49152, 57344, 61440, 63488, 64512, 65024, 65280,
   65408, 65472, 65504, 65520, 65528, 65532, 65534, 65535]*16

def drawline(x1,x2,y):
    y_=y<<4
    x1_=y_+(x1>>4)
    x2_=y_+(x2>>4)
    if x1_==x2_:
        buf[x1_]|=T[x1]&U[x2]
        return    
    buf[x1_]|=T[x1]
    buf[x2_]|=U[x2]        
    x1_+=+1
    while x1_<x2_:
        buf[x1_] = 0xffff
        x1_+=1


#### testing code ####

def clear():
    global buf
    buf=[0]*192*16

def render():
    for y in range(192):
        print "".join(bin(buf[(y<<4)+x])[2:].zfill(16) for x in range(16))


clear()
for y in range(0,192):
    drawline(y/2,y,y)
for x in range(10,200,6):
    drawline(x,x+2,0)
    drawline(x+3,x+5,1)
for y in range(-49,50):
    drawline(200-int((2500-y*y)**.5), 200+int((2500-y*y)**.5), y+60)
render()

1

Aqui está uma versão C da minha resposta Python usando a instrução switch em vez do loop while e indexação reduzida, incrementando um ponteiro em vez do índice da matriz

O tamanho da tabela de pesquisa pode ser substancialmente reduzido usando T [x1 e 0xf] e U [x2 e 0xf] para obter algumas instruções extras

#include <stdio.h>
#include <math.h>

unsigned short T[] = {0xffff, 0x7fff, 0x3fff, 0x1fff, 0x0fff, 0x07ff, 0x03ff, 0x01ff,
                      0x00ff, 0x007f, 0x003f, 0x001f, 0x000f, 0x0007, 0x0003, 0x0001,
                      0xffff, 0x7fff, 0x3fff, 0x1fff, 0x0fff, 0x07ff, 0x03ff, 0x01ff,
                      0x00ff, 0x007f, 0x003f, 0x001f, 0x000f, 0x0007, 0x0003, 0x0001,
                      0xffff, 0x7fff, 0x3fff, 0x1fff, 0x0fff, 0x07ff, 0x03ff, 0x01ff,
                      0x00ff, 0x007f, 0x003f, 0x001f, 0x000f, 0x0007, 0x0003, 0x0001,
                      0xffff, 0x7fff, 0x3fff, 0x1fff, 0x0fff, 0x07ff, 0x03ff, 0x01ff,
                      0x00ff, 0x007f, 0x003f, 0x001f, 0x000f, 0x0007, 0x0003, 0x0001,
                      0xffff, 0x7fff, 0x3fff, 0x1fff, 0x0fff, 0x07ff, 0x03ff, 0x01ff,
                      0x00ff, 0x007f, 0x003f, 0x001f, 0x000f, 0x0007, 0x0003, 0x0001,
                      0xffff, 0x7fff, 0x3fff, 0x1fff, 0x0fff, 0x07ff, 0x03ff, 0x01ff,
                      0x00ff, 0x007f, 0x003f, 0x001f, 0x000f, 0x0007, 0x0003, 0x0001,
                      0xffff, 0x7fff, 0x3fff, 0x1fff, 0x0fff, 0x07ff, 0x03ff, 0x01ff,
                      0x00ff, 0x007f, 0x003f, 0x001f, 0x000f, 0x0007, 0x0003, 0x0001,
                      0xffff, 0x7fff, 0x3fff, 0x1fff, 0x0fff, 0x07ff, 0x03ff, 0x01ff,
                      0x00ff, 0x007f, 0x003f, 0x001f, 0x000f, 0x0007, 0x0003, 0x0001,
                      0xffff, 0x7fff, 0x3fff, 0x1fff, 0x0fff, 0x07ff, 0x03ff, 0x01ff,
                      0x00ff, 0x007f, 0x003f, 0x001f, 0x000f, 0x0007, 0x0003, 0x0001,
                      0xffff, 0x7fff, 0x3fff, 0x1fff, 0x0fff, 0x07ff, 0x03ff, 0x01ff,
                      0x00ff, 0x007f, 0x003f, 0x001f, 0x000f, 0x0007, 0x0003, 0x0001,
                      0xffff, 0x7fff, 0x3fff, 0x1fff, 0x0fff, 0x07ff, 0x03ff, 0x01ff,
                      0x00ff, 0x007f, 0x003f, 0x001f, 0x000f, 0x0007, 0x0003, 0x0001,
                      0xffff, 0x7fff, 0x3fff, 0x1fff, 0x0fff, 0x07ff, 0x03ff, 0x01ff,
                      0x00ff, 0x007f, 0x003f, 0x001f, 0x000f, 0x0007, 0x0003, 0x0001,
                      0xffff, 0x7fff, 0x3fff, 0x1fff, 0x0fff, 0x07ff, 0x03ff, 0x01ff,
                      0x00ff, 0x007f, 0x003f, 0x001f, 0x000f, 0x0007, 0x0003, 0x0001,
                      0xffff, 0x7fff, 0x3fff, 0x1fff, 0x0fff, 0x07ff, 0x03ff, 0x01ff,
                      0x00ff, 0x007f, 0x003f, 0x001f, 0x000f, 0x0007, 0x0003, 0x0001,
                      0xffff, 0x7fff, 0x3fff, 0x1fff, 0x0fff, 0x07ff, 0x03ff, 0x01ff,
                      0x00ff, 0x007f, 0x003f, 0x001f, 0x000f, 0x0007, 0x0003, 0x0001,
                      0xffff, 0x7fff, 0x3fff, 0x1fff, 0x0fff, 0x07ff, 0x03ff, 0x01ff,
                      0x00ff, 0x007f, 0x003f, 0x001f, 0x000f, 0x0007, 0x0003, 0x0001};

unsigned short U[] = {0x8000, 0xc000, 0xe000, 0xf000, 0xf800, 0xfc00, 0xfe00, 0xff00,
                      0xff80, 0xffc0, 0xffe0, 0xfff0, 0xfff8, 0xfffc, 0xfffe, 0xffff,
                      0x8000, 0xc000, 0xe000, 0xf000, 0xf800, 0xfc00, 0xfe00, 0xff00,
                      0xff80, 0xffc0, 0xffe0, 0xfff0, 0xfff8, 0xfffc, 0xfffe, 0xffff,
                      0x8000, 0xc000, 0xe000, 0xf000, 0xf800, 0xfc00, 0xfe00, 0xff00,
                      0xff80, 0xffc0, 0xffe0, 0xfff0, 0xfff8, 0xfffc, 0xfffe, 0xffff,
                      0x8000, 0xc000, 0xe000, 0xf000, 0xf800, 0xfc00, 0xfe00, 0xff00,
                      0xff80, 0xffc0, 0xffe0, 0xfff0, 0xfff8, 0xfffc, 0xfffe, 0xffff,
                      0x8000, 0xc000, 0xe000, 0xf000, 0xf800, 0xfc00, 0xfe00, 0xff00,
                      0xff80, 0xffc0, 0xffe0, 0xfff0, 0xfff8, 0xfffc, 0xfffe, 0xffff,
                      0x8000, 0xc000, 0xe000, 0xf000, 0xf800, 0xfc00, 0xfe00, 0xff00,
                      0xff80, 0xffc0, 0xffe0, 0xfff0, 0xfff8, 0xfffc, 0xfffe, 0xffff,
                      0x8000, 0xc000, 0xe000, 0xf000, 0xf800, 0xfc00, 0xfe00, 0xff00,
                      0xff80, 0xffc0, 0xffe0, 0xfff0, 0xfff8, 0xfffc, 0xfffe, 0xffff,
                      0x8000, 0xc000, 0xe000, 0xf000, 0xf800, 0xfc00, 0xfe00, 0xff00,
                      0xff80, 0xffc0, 0xffe0, 0xfff0, 0xfff8, 0xfffc, 0xfffe, 0xffff,
                      0x8000, 0xc000, 0xe000, 0xf000, 0xf800, 0xfc00, 0xfe00, 0xff00,
                      0xff80, 0xffc0, 0xffe0, 0xfff0, 0xfff8, 0xfffc, 0xfffe, 0xffff,
                      0x8000, 0xc000, 0xe000, 0xf000, 0xf800, 0xfc00, 0xfe00, 0xff00,
                      0xff80, 0xffc0, 0xffe0, 0xfff0, 0xfff8, 0xfffc, 0xfffe, 0xffff,
                      0x8000, 0xc000, 0xe000, 0xf000, 0xf800, 0xfc00, 0xfe00, 0xff00,
                      0xff80, 0xffc0, 0xffe0, 0xfff0, 0xfff8, 0xfffc, 0xfffe, 0xffff,
                      0x8000, 0xc000, 0xe000, 0xf000, 0xf800, 0xfc00, 0xfe00, 0xff00,
                      0xff80, 0xffc0, 0xffe0, 0xfff0, 0xfff8, 0xfffc, 0xfffe, 0xffff,
                      0x8000, 0xc000, 0xe000, 0xf000, 0xf800, 0xfc00, 0xfe00, 0xff00,
                      0xff80, 0xffc0, 0xffe0, 0xfff0, 0xfff8, 0xfffc, 0xfffe, 0xffff,
                      0x8000, 0xc000, 0xe000, 0xf000, 0xf800, 0xfc00, 0xfe00, 0xff00,
                      0xff80, 0xffc0, 0xffe0, 0xfff0, 0xfff8, 0xfffc, 0xfffe, 0xffff,
                      0x8000, 0xc000, 0xe000, 0xf000, 0xf800, 0xfc00, 0xfe00, 0xff00,
                      0xff80, 0xffc0, 0xffe0, 0xfff0, 0xfff8, 0xfffc, 0xfffe, 0xffff,
                      0x8000, 0xc000, 0xe000, 0xf000, 0xf800, 0xfc00, 0xfe00, 0xff00,
                      0xff80, 0xffc0, 0xffe0, 0xfff0, 0xfff8, 0xfffc, 0xfffe, 0xffff};

unsigned short buf[192*16];

void clear(){
    int i;
    for (i=0; i<192*16; i++) buf[i]==0;
}

void render(){
    int x,y;
    for (y=0; y<192; y++){
        for (x=0; x<256; x++) printf("%d", (buf[(y<<4)+(x>>4)]>>(15-(x&15)))&1);
        printf("\n");
    }
}

void drawline(int x1, int x2, int y){
    int y_ = y<<4;
    int x1_ = y_+(x1>>4);
    int x2_ = y_+(x2>>4);
    unsigned short *p = buf+x1_;

    if (x1_==x2_){
        *p|=T[x1]&U[x2];
        return;
        }

    *p++|=T[x1];
    switch (x2_-x1_){
    case 14: *p++ = 0xffff;
    case 13: *p++ = 0xffff;
    case 12: *p++ = 0xffff;
    case 11: *p++ = 0xffff;
    case 10: *p++ = 0xffff;
    case 9: *p++ = 0xffff;
    case 8: *p++ = 0xffff;
    case 7: *p++ = 0xffff;
    case 6: *p++ = 0xffff;
    case 5: *p++ = 0xffff;
    case 4: *p++ = 0xffff;
    case 3: *p++ = 0xffff;
    case 2: *p++ = 0xffff;
    case 1: *p++ = U[x2];
    }     
}


int main(){
    int x,y;
    clear();

    for (y=0; y<192; y++){
        drawline(y/2,y,y); 
    }

    for (x=10; x<200; x+=6){
        drawline(x,x+2,0);
        drawline(x+3,x+5,1);
    }

    for (y=-49; y<50; y++){
        x = sqrt(2500-y*y);
        drawline(200-x, 200+x, y+60);
    }
    render();
    return 0;
    }

Quão rápido é?
usuário desconhecido

@ usuário desconhecido, quanto tempo é um pedaço de corda? Eu acho que deveria ser mais rápido que a resposta aceita, porque usa uma tabela de pesquisa para reduzir um pouco a quantidade de trabalho. Por que você não os experimenta e nos informa o que encontra?
N

1

Scala, linhas 7s / 1M linhas 4.1s / 1M

// declaration and initialisation of an empty field: 
val field = Array.ofDim[Short] (192, 16) 

primeira implementação:

// util-method: set a single Bit:
def setBit (x: Int, y: Int) = 
  field (y)(x/16) = (field (y)(x/16) | (1 << (15 - (x % 16)))).toShort 
def line (x0: Int, x1: Int, y: Int) = 
  (x0 to x1) foreach (setBit (_ , y))

Após eliminar a chamada do método interno e substituir o loop for- com um while, no meu 2Ghz Single Core pelo Scala 2.8, ele absolve 1 milhão. Linhas em 4.1s seg. em vez dos 7s iniciais.

  def line (x0: Int, x1: Int, y: Int) = {
    var x = x0
    while (x < x1) {  
      field (y)(x/16) = (field (y)(x/16) | (1 << (15 - (x % 16)))).toShort
      x += 1
    }
  }

Código de teste e chamada:

// sample invocation:
line (12, 39, 3) 
// verification 
def shortprint (s: Short) = s.toBinaryString.length match {          
  case 16 => s.toBinaryString                                          
  case 32 => s.toBinaryString.substring (16)                           
  case x  => ("0000000000000000".substring (x) + s.toBinaryString)}

field (3).take (5).foreach (s=> println (shortprint (s)))            
// result:
0000000000001111
1111111111111111
1111111100000000
0000000000000000
0000000000000000

Teste de performance:

  val r = util.Random 

  def testrow () {
    val a = r.nextInt (256)
    val b = r.nextInt (256)
    if (a < b)
      line (a, b, r.nextInt (192)) else
        line (b, a, r.nextInt (192)) 
  }

  def test (count: Int): Unit = {
    for (n <- (0 to count))
      testrow ()
  }

  // 1 mio tests
  test (1000*1000) 

Testado com o tempo da ferramenta unix, comparando o tempo do usuário, incluindo o tempo de inicialização, o código compilado, sem a fase de inicialização da JVM.

Aumentar o número de linhas mostra que, para cada novo milhão, são necessários 3,3s extras.

Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.