Ajude Indiana Jones a obter o tesouro


45

História

Indiana Jones estava explorando uma caverna onde um tesouro precioso está localizado. De repente, um terremoto aconteceu.

Quando o terremoto terminou, ele notou que algumas pedras que caíam do teto bloqueavam o caminho para o tesouro. Ele também percebeu que podia empurrar uma pedra, mas como as pedras eram muito pesadas, ele não pôde empurrar duas pedras consecutivas .

Seu objetivo é ajudar Indiana Jones a obter o tesouro. Como é muito difícil empurrar uma única pedra, o número de empurrões é muito importante.

Problema

Encontre o melhor caminho (onde Indiana Jones empurra as pedras o mínimo possível), para encontrar o tesouro.

Mapa (entrada)

O mapa é um mpor n(tanto maior do que 1) da matriz, que pode conter cinco tipos de células:

  • 0 o que significa a célula em branco,
  • 1 o que significa a parede,
  • 2 em que Indiana Jones está localizado (apenas um existe),
  • 3 em que o tesouro está localizado (apenas um existe),
  • e 4, o que significa uma rocha.

Na primeira linha do mapa, a dimensão do mapa é especificada como 4 6, e da segunda linha para a última linha do mapa, a estrutura da caverna é especificada algo como isto.

110131
104040
100101
200000

Portanto, o mapa completo é:

4 6
110131
104040
100101
200000

que significa

O mapa

O mapa é fornecido por stdin, um arquivo (você pode especificar o nome do arquivo) ou uma matriz no código que contém apenas as informações acima.

Resultado

O valor mínimo que Indiana Jones deve aumentar. Se não houver, saída X.

No caso acima , ele pode empurrar uma pedra da esquerda para cima e, em seguida, pode empurrar uma pedra da direita para obter o tesouro. Portanto, a saída neste caso é 2.

Contudo. nesse caso :

4 6
111131
104040
100101
200000

(veja a seção abaixo) ele não pode empurrar a pedra certa, porque ela destruirá o tesouro. Além disso, empurrar a pedra esquerda para a direita não muda nada. Portanto, a saída é X.

Regras

  • Ele pode se mover em apenas quatro direções, para cima, para baixo, esquerda e direita.
  • Ele não pode empurrar duas pedras consecutivas .
  • Ele não pode puxar nenhuma pedra e só pode empurrá-la em uma direção ('para frente').
  • Ele não pode atravessar paredes. Apenas os lugares que ele pode ir são as células em branco e a célula do tesouro.
  • A pedra não pode ser colocada no tesouro. Isso destruirá o tesouro. :(
  • Ele não pode sair do mapa.

Metas

O programa que pode lidar com o maior número de mapas (fornecido na seção 'Exemplo' e outros) em um tempo razoável (especificamente, 10 segundos) e produz a resposta certa ganha.

Aqui 'outros' significa exemplos de entradas fornecidas nas respostas. Isso significa que você deve criar um algoritmo inteligente para que outros programas não consigam resolver mapas que seu programa possa resolver, e mapas resolvidos por outros programas possam ser resolvidos por seu programa. No entanto, colocar soluções no código não será considerado válido.

Nota

Originalmente, esse era um projeto de médio prazo de uma aula de IA que eu ouvia; apenas uma coisa era diferente: dizia-se que havia apenas duas rochas.

Foi dito que esse problema é NP, mas também foi dito que um bom algoritmo heurístico pode resolver o problema com bastante eficiência. Usei algumas idéias e heurísticas para resolver o problema com eficiência, e meu código conseguiu encontrar todas as soluções de amostras muito rapidamente (menos de um segundo).

No entanto, quando havia mais de duas pedras, havia alguns casos em que o código não conseguia encontrar a resposta em um tempo razoável. Eu tinha algumas idéias, mas algumas estavam 'erradas' e não pude expressar outras no código. Eu queria ver quais algoritmos inteligentes existem para resolver esse problema, então escrevi isso.

Como já concluí o projeto (aliás, as imagens não são minhas - pesquisei no Google), você não precisa se preocupar com isso.

Exemplos

Exemplos podem ser vistos aqui. Você também pode ver exemplos e testar seus resultados aqui (isso deve funcionar em navegadores modernos). Você pode obter o mapa no formato descrito acima, digitando whatisthis()no console JS.

http://bit.sparcs.org/~differ/sokoban/#0 ~ http://bit.sparcs.org/~differ/sokoban/#19 contém exemplos dos quais originalmente era a classe fornecida.

Resultado

Desculpe, eu estava atrasado .. bastante na verdade. : P (eu estava com preguiça de marcar. Desculpe.)

Abaixo está o resultado. (X: errado, O: certo,?: Leva pelo menos 10s, interrompido)

Map#: 0 1 2 3 4 5 12 15 19 T1 T2 T3 T4 T5 T6 T7
Ruby: X O O ? O O  O  X  ?  ?  O  ?  ?  ?  ?  ?
Java: O O X O X X  O  O  ?  ?  O  O  O  X  O  O

(Java 19: demorou 25s, o resultado estava correto.) (Eu usei o ruby ​​1.9.3 e o javac 1.7.0_13)

Parece que o algoritmo Java era realmente melhor. (A propósito, pensei em um método semelhante, mas percebi que existem mapas como o mapa de teste 5).


7
Essa é difícil.
FUZxxl

8
Isso me faz querer escrever um gerador de números aleatórios com base na complexidade do quebra-cabeça, sempre subestimando ... as pessoas inventariam quebra-cabeças difíceis e depois coçariam a cabeça por dias imaginando como o meu programa o resolveu com apenas 4 toques ...: )
Nathan Wheeler

@ NathanWheeler, sim, construa um solucionador indeterminado. Funciona, mas você precisa executá-lo em um computador quântico. : P
Neil

Teria que calculá-lo iniciando Indiana Jones no tesouro e trabalhando para trás, como se você resolvesse um labirinto. A diferença é que esse estado não é determinado apenas pela posição, mas também pelo posicionamento das rochas (posso passar pelo mesmo lugar duas vezes se as rochas tiverem sido movidas). Hmm, eu vou ter que pensar mais sobre isso ..
Neil

Respostas:


11

Java - Um pouco mais inteligente / rápido

Bastante código lá. Estou tentando ser mais rápido avaliando os impulsos na ordem de "qual a probabilidade de liberar um caminho para o tesouro", que é baseado em dois percursos Dijkstra (um para quando encontra pedras, o outro ignora rochas). Está funcionando muito bem, e o exemplo da pasta que parece ser problemático para o autor é resolvido em aproximadamente 2 segundos por essa implementação. Alguns outros exemplos levam de 30 a 40 segundos, o que eu ainda acho muito longo, mas não consegui encontrar uma maneira de melhorar isso sem quebrar as coisas :)

Dividi minhas coisas em vários arquivos para obter uma melhor estrutura (também porque mudei para Java do ruby):

Ponto de entrada:

import java.util.Date;    
public class IndianaJones {
    public static void main(final String[] args) throws Exception {
        final Maze maze = new Maze(System.in);
        final Date startAt = new Date();
        final int solution = maze.solve();
        final Date endAt = new Date();
        System.out.printf("Found solution: %s in %d ms.",
                          solution < Integer.MAX_VALUE ? solution : "X",
                          endAt.getTime() - startAt.getTime());
    }
}

Enum do auxiliar de direção:

enum Direction {
    UP(-1, 0), DOWN(1, 0), LEFT(0, -1), RIGHT(0, 1);

    public final int drow;
    public final int dcol;

    private Direction(final int drow, final int dcol) {
        this.drow = drow;
        this.dcol = dcol;
    }

    public final Direction opposite() {
        switch (this) {
        case UP:
            return DOWN;
        case DOWN:
            return UP;
        case LEFT:
            return RIGHT;
        case RIGHT:
            return LEFT;
        }
        return null;
    }
}

Uma classe abstrata para representar uma parte localizada do "labirinto":

abstract class PointOfInterest {
    public final int row;
    public final int col;

    protected PointOfInterest(final int row, final int col) {
        this.row = row;
        this.col = col;
    }

    public final boolean isAt(final int row, final int col) {
        return this.row == row && this.col == col;
    }

    @Override
    public final String toString() {
        return getClass().getSimpleName() + "(" + row + ", " + col + ")";
    }

    @Override
    public final int hashCode() {
        return row ^ col;
    }

    @Override
    public final boolean equals(Object obj) {
        if (this == obj)
            return true;
        if (!(obj instanceof PointOfInterest))
            return false;
        if (!getClass().equals(obj.getClass()))
            return false;
        final PointOfInterest other = (PointOfInterest) obj;
        return row == other.row && col == other.col;
    }
}

E, finalmente, o próprio labirinto:

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.EnumSet;
import java.util.HashSet;
import java.util.Map;
import java.util.Set;
import java.util.SortedMap;
import java.util.TreeMap;

public class Maze {
    private static final char WALL = '1';
    private static final char INDY = '2';
    private static final char GOAL = '3';
    private static final char ROCK = '4';

    private final Maze parent;
    private final Set<Maze> visited;
    private final boolean[][] map;
    private final int[][] dijkstra;
    private int[][] dijkstraGhost;
    private String stringValue = null;

    private int shortestSolution = Integer.MAX_VALUE;

    private Goal goal = null;
    private Indy indy = null;
    private Set<Rock> rocks = new HashSet<>();

    private Maze(final Maze parent, final Rock rock, final Direction direction) {
        this.parent = parent;
        this.visited = parent.visited;
        map = parent.map;
        dijkstra = new int[map.length][map[rock.row].length];
        for (final int[] part : dijkstra)
            Arrays.fill(part, Integer.MAX_VALUE);
        goal = new Goal(parent.goal.row, parent.goal.col);
        indy = new Indy(rock.row, rock.col);
        for (final Rock r : parent.rocks)
            if (r == rock)
                rocks.add(new Rock(r.row + direction.drow, r.col + direction.dcol));
            else
                rocks.add(new Rock(r.row, r.col));
        updateDijkstra(goal.row, goal.col, 0, true);
    }

    public Maze(final InputStream is) {
        this.parent = null;
        this.visited = new HashSet<>();
        try (final BufferedReader br = new BufferedReader(new InputStreamReader(is))) {
            String line = br.readLine();
            final String[] sizeParts = line.split(" ");
            final int height = Integer.parseInt(sizeParts[0]);
            final int width = Integer.parseInt(sizeParts[1]);
            map = new boolean[height][width];
            dijkstra = new int[height][width];

            int row = 0;
            while ((line = br.readLine()) != null) {
                for (int col = 0; col < line.length(); col++) {
                    final char c = line.charAt(col);
                    map[row][col] = c == WALL;
                    dijkstra[row][col] = Integer.MAX_VALUE;
                    if (c == INDY) {
                        if (indy != null)
                            throw new IllegalStateException("Found a second indy!");
                        indy = new Indy(row, col);
                    } else if (c == GOAL) {
                        if (goal != null)
                            throw new IllegalStateException("Found a second treasure!");
                        goal = new Goal(row, col);
                    } else if (c == ROCK) {
                        rocks.add(new Rock(row, col));
                    }
                }
                row++;
            }

            updateDijkstra(goal.row, goal.col, 0, true);
        } catch (final IOException ioe) {
            throw new RuntimeException("Could not read maze from InputStream", ioe);
        }
    }

    public int getShortestSolution() {
        Maze ptr = this;
        while (ptr.parent != null)
            ptr = ptr.parent;
        return ptr.shortestSolution;
    }

    public void setShortestSolution(int shortestSolution) {
        Maze ptr = this;
        while (ptr.parent != null)
            ptr = ptr.parent;
        ptr.shortestSolution = Math.min(ptr.shortestSolution, shortestSolution);
    }

    private final boolean isRepeat(final Maze maze) {
        return this.visited.contains(maze);
    }

    private final void updateDijkstra(final int row, final int col, final int value, final boolean force) {
        if (row < 0 || col < 0 || row >= dijkstra.length || col >= dijkstra[row].length)
            return;
        if (map[row][col] || isRockPresent(row, col))
            return;
        if (dijkstra[row][col] <= value && !force)
            return;

        dijkstra[row][col] = value;
        updateDijkstra(row - 1, col, value + 1, false);
        updateDijkstra(row + 1, col, value + 1, false);
        updateDijkstra(row, col - 1, value + 1, false);
        updateDijkstra(row, col + 1, value + 1, false);
    }

    private final void updateDijkstraGhost(final int row, final int col, final int value, final boolean force) {
        if (row < 0 || col < 0 || row >= dijkstra.length || col >= dijkstra[row].length)
            return;
        if (map[row][col] || isRockPresent(row, col))
            return;
        if (dijkstraGhost[row][col] <= value && !force)
            return;

        dijkstraGhost[row][col] = value;
        updateDijkstraGhost(row - 1, col, value + 1, false);
        updateDijkstraGhost(row + 1, col, value + 1, false);
        updateDijkstraGhost(row, col - 1, value + 1, false);
        updateDijkstraGhost(row, col + 1, value + 1, false);
    }

    private final int dijkstraScore(final int row, final int col) {
        if (row < 0 || col < 0 || row >= dijkstra.length || col >= dijkstra[row].length)
            return Integer.MAX_VALUE;
        return dijkstra[row][col];
    }

    private final int dijkstraGhostScore(final int row, final int col) {
        if (dijkstraGhost == null) {
            dijkstraGhost = new int[map.length][map[indy.row].length];
            for (final int[] part : dijkstraGhost)
                Arrays.fill(part, Integer.MAX_VALUE);
            updateDijkstraGhost(goal.row, goal.col, 0, true);
        }
        if (row < 0 || col < 0 || row >= dijkstra.length || col >= dijkstra[row].length)
            return Integer.MAX_VALUE;
        return dijkstraGhost[row][col];
    }

    private boolean isRockPresent(final int row, final int col) {
        for (final Rock rock : rocks)
            if (rock.isAt(row, col))
                return true;
        return false;
    }

    public boolean isEmpty(final int row, final int col) {
        if (row < 0 || col < 0 || row >= map.length || col >= map[row].length)
            return false;
        return !map[row][col] && !isRockPresent(row, col) && !goal.isAt(row, col);
    }

    public int solve() {
        return solve(0);
    }

    private int solve(final int currentDepth) {
        System.out.println(toString());
        visited.add(this);
        if (isSolved()) {
            setShortestSolution(currentDepth);
            return 0;
        }
        if (currentDepth >= getShortestSolution()) {
            System.out.println("Aborting at depth " + currentDepth + " because we know better: "
                               + getShortestSolution());
            return Integer.MAX_VALUE;
        }
        final Map<Rock, Set<Direction>> nextTries = indy.getMoveableRocks();
        int shortest = Integer.MAX_VALUE - 1;
        for (final Map.Entry<Rock, Set<Direction>> tries : nextTries.entrySet()) {
            final Rock rock = tries.getKey();
            for (final Direction dir : tries.getValue()) {
                final Maze next = new Maze(this, rock, dir);
                if (!isRepeat(next)) {
                    final int nextSolution = next.solve(currentDepth + 1);
                    if (nextSolution < shortest)
                        shortest = nextSolution;
                }
            }
        }
        return shortest + 1;
    }

    public boolean isSolved() {
        return indy.canReachTreasure();
    }

    @Override
    public String toString() {
        if (stringValue == null) {
            final StringBuilder out = new StringBuilder();
            for (int row = 0; row < map.length; row++) {
                if (row == 0) {
                    out.append('\u250C');
                    for (int col = 0; col < map[row].length; col++)
                        out.append('\u2500');
                    out.append("\u2510\n");
                }
                out.append('\u2502');
                for (int col = 0; col < map[row].length; col++) {
                    if (indy.isAt(row, col))
                        out.append('*');
                    else if (goal.isAt(row, col))
                        out.append("$");
                    else if (isRockPresent(row, col))
                        out.append("@");
                    else if (map[row][col])
                        out.append('\u2588');
                    else
                        out.append(base64(dijkstra[row][col]));
                }
                out.append("\u2502\n");
                if (row == map.length - 1) {
                    out.append('\u2514');
                    for (int col = 0; col < map[row].length; col++)
                        out.append('\u2500');
                    out.append("\u2518\n");
                }
            }
            stringValue = out.toString();
        }
        return stringValue;
    }

    @Override
    public boolean equals(Object obj) {
        if (this == obj)
            return true;
        if (!obj.getClass().equals(getClass()))
            return false;
        final Maze other = (Maze) obj;
        if (other.map.length != map.length)
            return false;
        for (int row = 0; row < map.length; row++) {
            if (other.map[row].length != map[row].length)
                return false;
            for (int col = 0; col < map[row].length; col++)
                if (other.map[row][col] != map[row][col])
                    return false;
        }
        return indy.equals(other.indy) && rocks.equals(other.rocks) && goal.equals(other.goal);
    }

    @Override
    public int hashCode() {
        return getClass().hashCode() ^ indy.hashCode() ^ goal.hashCode() ^ rocks.hashCode();
    }

    private final class Goal extends PointOfInterest {
        public Goal(final int row, final int col) {
            super(row, col);
        }
    }

    private final class Indy extends PointOfInterest {
        public Indy(final int row, final int col) {
            super(row, col);
        }

        public boolean canReachTreasure() {
            return dijkstraScore(row, col) < Integer.MAX_VALUE;
        }

        public SortedMap<Rock, Set<Direction>> getMoveableRocks() {
            final SortedMap<Rock, Set<Direction>> out = new TreeMap<>();
            @SuppressWarnings("unchecked")
            final Set<Direction> checked[][] = new Set[map.length][map[row].length];
            lookForRocks(out, checked, row, col, null);
            return out;
        }

        private final void lookForRocks(final Map<Rock, Set<Direction>> rockStore,
                                        final Set<Direction>[][] checked,
                                        final int row,
                                        final int col,
                                        final Direction comingFrom) {
            if (row < 0 || col < 0 || row >= checked.length || col >= checked[row].length)
                return;
            if (checked[row][col] == null)
                checked[row][col] = EnumSet.noneOf(Direction.class);
            if (checked[row][col].contains(comingFrom))
                return;
            for (final Rock rock : rocks) {
                if (rock.row == row && rock.col == col) {
                    if (rock.canBeMoved(comingFrom) && rock.isWorthMoving(comingFrom)) {
                        if (!rockStore.containsKey(rock))
                            rockStore.put(rock, EnumSet.noneOf(Direction.class));
                        rockStore.get(rock).add(comingFrom);
                    }
                    return;
                }
            }
            if (comingFrom != null)
                checked[row][col].add(comingFrom);
            for (final Direction dir : Direction.values())
                if (comingFrom == null || dir != comingFrom.opposite())
                    if (isEmpty(row + dir.drow, col + dir.dcol) || isRockPresent(row + dir.drow, col + dir.dcol))
                        lookForRocks(rockStore, checked, row + dir.drow, col + dir.dcol, dir);
        }
    }

    private final class Rock extends PointOfInterest implements Comparable<Rock> {
        public Rock(final int row, final int col) {
            super(row, col);
        }

        public boolean canBeMoved(final Direction direction) {
            return isEmpty(row + direction.drow, col + direction.dcol);
        }

        public boolean isWorthMoving(final Direction direction) {
            boolean worthIt = false;
            boolean reachable = false;
            int emptyAround = 0;
            for (final Direction dir : Direction.values()) {
                reachable |= (dijkstraScore(row, col) < Integer.MAX_VALUE);
                emptyAround += (isEmpty(row + dir.drow, col + dir.dcol) ? 1 : 0);
                if (dir != direction && dir != direction.opposite()
                    && dijkstraScore(row + dir.drow, col + dir.dcol) < Integer.MAX_VALUE)
                    worthIt = true;
            }
            return (emptyAround < 4) && (worthIt || !reachable);
        }

        public int proximityIndice() {
            final int ds = min(dijkstraScore(row - 1, col),
                               dijkstraScore(row + 1, col),
                               dijkstraScore(row, col - 1),
                               dijkstraScore(row, col + 1));
            if (ds < Integer.MAX_VALUE)
                return ds;
            else
                return min(dijkstraGhostScore(row - 1, col),
                           dijkstraGhostScore(row + 1, col),
                           dijkstraGhostScore(row, col - 1),
                           dijkstraGhostScore(row, col + 1));
        }

        @Override
        public int compareTo(Rock o) {
            return new Integer(proximityIndice()).compareTo(o.proximityIndice());
        }
    }

    private static final char base64(final int i) {
        if (i >= 0 && i <= 9)
            return (char) ('0' + i);
        else if (i < 36)
            return (char) ('A' + (i - 10));
        else
            return ' ';
    }

    private static final int min(final int i1, final int i2, final int... in) {
        int min = Math.min(i1, i2);
        for (final int i : in)
            min = Math.min(min, i);
        return min;
    }
}

12

Ruby - Enorme e empolgado

Implementação um tanto ingênua que força bruta em seu caminho através do labirinto. Não é super rápido em alguns casos (não tão) estranhos. Pode ser aprimorado encontrando heurísticas melhores do que apenas "se estiver mais próximo do tesouro, vamos investigar primeiro", mas as idéias gerais estão lá.

Também mostrará como Indiana colocou as mãos no tesouro, caso ele possa, isso é bônus.

EMPTY = '0'
WALL = '1'
INDY = '2'
GOAL = '3'
ROCK = '4'

map=%q|8 8
00001000
00000100
00000010
00000010
03004040
10000010
10000100
10000102|

def deep_dup(arr)
  dupl = arr.dup
  (0..dupl.size-1).to_a.each do |i|
    dupl[i] = dupl[i].dup
  end
  return dupl
end

class Map
  @@visited = []
  attr_reader :mapdata, :indy_r, :indy_c, :prev

  def self.parse(str)
    lines = str.split("\n")
    mapdata = []
    indy_r = -1
    indy_c = -1
    lines[1..-1].each_with_index do |line, idx|
      row = ((mapdata ||= [])[idx] ||= [])
      line.split(//).each_with_index do |c, cidx|
        if c==INDY
          indy_r = idx
          indy_c = cidx
          row[cidx] = EMPTY
        else
          row[cidx] = c
        end
      end
    end
    return Map.new(mapdata, indy_r, indy_c)
  end

  def initialize(mapdata, indy_r, indy_c, prev = nil, pushed = false)
    @mapdata = mapdata
    @mapdata.freeze
    @mapdata.each {|x| x.freeze}
    @indy_r = indy_r
    @indy_c = indy_c
    @prev = prev
    @pushed = pushed
  end

  def visit!
    @@visited << self
  end

  def visited?
    @@visited.include?(self)
  end

  def pushes
    pushes = @pushed ? 1 : 0
    if @prev
      pushes += @prev.pushes
    end
    return pushes
  end

  def history
    return @prev ? 1+@prev.history : 0
  end

  def next_maps
    maps = []
    [[-1, 0], [1, 0], [0, -1], [0, 1]].each do |dr, dc|
      new_i_r = self.indy_r + dr
      new_i_c = self.indy_c + dc
      if new_i_r >= 0 && new_i_r < @mapdata.size && new_i_c >= 0 && new_i_c < @mapdata[0].size
        new_map = nil
        pushed = false
        case @mapdata[new_i_r][new_i_c]
        when EMPTY, GOAL then new_map = @mapdata
        when ROCK then
          if @mapdata[new_i_r+dr] && @mapdata[new_i_r+dr][new_i_c+dc] == EMPTY
            new_map = deep_dup(@mapdata)
            new_map[new_i_r][new_i_c] = EMPTY
            new_map[new_i_r+dr][new_i_c+dc] = ROCK
            pushed = true
          end
        end
        if new_map && !@@visited.include?(new_map = Map.new(new_map, new_i_r, new_i_c, self, pushed))
          maps << new_map
        end
      end
    end
    return maps
  end

  def wins?
    return @mapdata[@indy_r][@indy_c] == GOAL
  end

  def to_s
    str = ''
    @mapdata.each_with_index do |row, r|
      row.each_with_index do |col, c|
        if r == @indy_r and c == @indy_c then
          str += 'I'
        else
          case col
          when EMPTY then str += '_'
          when WALL then str+= '#'
          when ROCK then str += 'O'
          when GOAL then str += '$'
          end
        end
      end
      str += "\n"
    end
    return str
  end

  def ==(other)
    return (self.mapdata == other.mapdata) &&
      (self.indy_r == other.indy_r) &&
      (self.indy_c == other.indy_c)
  end

  def dist_to_treasure
    if @distance.nil?
      @mapdata.each_with_index do |r, ri|
        r.each_with_index do |c, ci|
          if c == GOAL
            @distance = Math.sqrt((ri - @indy_r)**2 + (ci - @indy_c)**2)
            return @distance
          end
        end
      end
    end
    return @distance
  end

  def <=>(other)
    dist_diff = self.dist_to_treasure <=> other.dist_to_treasure
    if dist_diff != 0
      return dist_diff
    else
      return self.pushes <=> other.pushes
    end
  end
end

scored = nil
root = Map.parse(map)
to_visit = [root]
until to_visit.empty?
  state = to_visit.pop
  next if state.visited?
  if state.wins? && (scored.nil? || scored.pushes > state.pushes)
    scored = state
  end
  state.visit!
  to_visit += state.next_maps
  to_visit.reject! {|x| x.visited? || (scored && scored.pushes <= x.pushes) }
  to_visit.sort!
  to_visit.reverse!
end

puts scored ? scored.pushes : 'X'
exit(0) unless scored
steps = [scored]
curr = scored
while curr = curr.prev
  steps << curr
end
puts "\nDetails of the path:"
steps.reverse.each_with_index do |step, idx|
  puts "Step ##{idx} (history: #{step.history}, pushes so far: #{step.pushes})"
  puts step
  puts
end

Edit: Pensei em várias maneiras de melhorar significativamente o desempenho disso em situações não óbvias (onde atualmente chupa ovos verdes) descartando uma simples avaliação de movimento (por exemplo, só me importo quando indy empurra pedras e / ou chega ao tesouro). Provavelmente atualizarei o código mais tarde, quando tiver tempo de implementar.


10

C ++ 14 em 16

O algoritmo é ineficiente e tem muita memória. Além disso, eu não tinha tempo para arrumar tudo, mas terei quando tiver mais tempo;) Um ponto interessante é que meu algoritmo falha nos mesmos mapas de teste que o questionador. No meu notebook antigo, o processo começa a ser trocado pelos mapas T4 e T6. O mapa 3 leva muito tempo, mas é resolvido com o tempo. Todos os outros são resolvidos quase instantaneamente. Então terei que descobrir como resolver T4 e T6 e tentar o algoritmo em uma máquina com mais memória. Eventualmente eu posso resolver T4 e T6 lá. Vou manter a postagem atualizada ...

Abaixo está o resultado. (X: errado, O: certo,?: Leva pelo menos 10s, interrompido)

Map#         : 0 1 2 3 4 5 12 15 19 T1 T2 T3 T4 T5 T6 T7
C++  (foobar): O O O O O O  O  O  O  O  O  O  ?  O  ?  O
Ruby (Romain): X O O ? O O  O  X  ?  ?  O  ?  ?  ?  ?  ?
Java (Romain): O O X O X X  O  O  ?  ?  O  O  O  X  O  O

Como o código fonte é bastante longo e não é muito agradável de ler ... Basicamente, ele apenas procura todas as rochas que podem ser alcançadas por Indiana Jones. Para as rochas que podem ser alcançadas, ele armazena as informações em quais direções ele pode ser movido. Portanto, é criada uma lista de possíveis movimentos para o mapa atual. Para cada um desses movimentos possíveis, uma cópia do mapa é criada e o movimento aplicado. Para os mapas recém-criados, o algoritmo verificará novamente quais movimentos podem ser aplicados ... Isso é feito até que nenhum movimento adicional seja possível ou um caminho para a arca do tesouro seja encontrado. À medida que o algoritmo tenta primeiro todos os movimentos que precisariam de apenas um movimento para chegar ao peito, tudo o que precisaria de dois, e assim por diante ... a primeira maneira encontrada também é automaticamente a mais curta. Para evitar loops, o algoritmo lembra para cada mapa que movimentos poderiam ser aplicados. Se for criado outro mapa que resulte em uma lista de movimentos que já foram encontrados antes, eles serão eliminados silenciosamente, pois já estão sendo processados. Infelizmente, não é possível executar todos os movimentos apenas uma vez, pois pode haver mapas que exigem que uma rocha seja movida sobre o mesmo campo várias vezes. Caso contrário, eu poderia economizar muita memória. Além disso, para resolver mapas como o mapa 3 a tempo, o algoritmo ignora todas as rochas que podem ser percorridas ... Portanto, no mapa 3, a rocha no meio do nada será movida, mas apenas até que não haja mais paredes ao redor. O código pode ser compilado com g ++ --std = c ++ 0x com g ++ versão 4.4.3 ou mais recente. não é possível executar todos os movimentos apenas uma vez, pois pode haver mapas que exigem que uma rocha seja movida sobre o mesmo campo várias vezes. Caso contrário, eu poderia economizar muita memória. Além disso, para resolver mapas como o mapa 3 a tempo, o algoritmo ignora todas as rochas que podem ser percorridas ... Portanto, no mapa 3, a rocha no meio do nada será movida, mas apenas até que não haja mais paredes ao redor. O código pode ser compilado com g ++ --std = c ++ 0x com g ++ versão 4.4.3 ou mais recente. não é possível executar todos os movimentos apenas uma vez, pois pode haver mapas que exigem que uma rocha seja movida sobre o mesmo campo várias vezes. Caso contrário, eu poderia economizar muita memória. Além disso, para resolver mapas como o mapa 3 a tempo, o algoritmo ignora todas as rochas que podem ser percorridas ... Portanto, no mapa 3, a rocha no meio do nada será movida, mas apenas até que não haja mais paredes ao redor. O código pode ser compilado com g ++ --std = c ++ 0x com g ++ versão 4.4.3 ou mais recente. mas apenas até que não haja mais paredes ao seu redor. O código pode ser compilado com g ++ --std = c ++ 0x com g ++ versão 4.4.3 ou mais recente. mas apenas até que não haja mais paredes ao seu redor. O código pode ser compilado com g ++ --std = c ++ 0x com g ++ versão 4.4.3 ou mais recente.

#include <vector>
#include <iostream>
#include <iterator>
#include <sstream>
#include <unordered_set>
#include <utility>

enum class dir : char {
    up, down, left, right
};

enum class field : char {
    floor, wall, indiana, treasure, rock, border, visited
};

class pos {
    private:
        int x, y;
        field f_type;


    public:
        pos() : x{-1}, y{-1}, f_type{field::border} {}
        pos(int x, int y, field f_type) : x{x}, y{y}, f_type{f_type} {}

        const field& get() {
            return f_type;
        }

        friend class map;
        friend class move;

        bool operator==(const pos& other) const {
            return x == other.x && y == other.y && f_type == other.f_type;
        }
};

class move {
    private:
        pos position;
        dir direction;

    public:
        move(pos& position, dir&& direction) : position(position), direction(direction) {}

        bool operator==(const move& other) const {
            return position == other.position && direction == other.direction;
        }

        int int_value() const {
            return static_cast<char>(direction) + position.x + position.y + static_cast<char>(position.f_type);
        }

        std::string str() const;

        friend class map;
};

std::string move::str() const {
    std::string direction_str;
    switch(direction) {
        case dir::up: direction_str = "up"; break;
        case dir::down: direction_str = "down"; break;
        case dir::left: direction_str = "left"; break;
        case dir::right: direction_str = "right"; break;
    }
    std::ostringstream oss{};
    oss << "move x" << position.x << " y" << position.y << " " << direction_str;
    return oss.str();
}

std::ostream& operator<<(std::ostream& os, const move& move_object) {
    return os << move_object.str();
}


namespace std {
    template<> struct hash< ::move> {
        size_t operator()(const ::move& o) const {
            return hash<int>()(o.int_value());
        }
    };
}


class constellation {
    private:
        const std::unordered_set<move> moves;

    public:
        constellation(const std::unordered_set<move>& moves) : moves(moves) {}

        bool operator==(const constellation& other) const {
            if (moves.size() != other.moves.size()) return false;
            for (auto i = moves.begin(); i != moves.end(); ++i) {
                if (!other.moves.count(*i)) return false;
            }
            return true;
        }

        int int_value() const {
            int v = 0;
            for (auto i = moves.begin(); i != moves.end(); ++i) {
                v += i->int_value();
            }
            return v;
        }
};

namespace std {
    template<> struct hash< ::constellation> {
        size_t operator()(const ::constellation& o) const {
            return hash<int>()(o.int_value());
        }
    };
}


class map {

    private:
        pos* previous;
        pos start, border;
        std::vector< std::vector<pos> > rep;
        void init(const std::string&);

    public:
        map(std::istream& input) : previous{} {
            init(static_cast<std::stringstream const&>(std::stringstream() << input.rdbuf()).str());
        }

        map& move(const move& m) {
            pos source = m.position;
            pos& target = get(source, m.direction);
            target.f_type = source.f_type;
            source.f_type = field::indiana;
            rep[start.y][start.x].f_type = field::floor;
            start = source;
            rep[start.y][start.x].f_type = field::indiana;
            return *this;
        }

        std::string str() const;

        pos& get() { return start; }

        pos& get(pos& position, const dir& direction) {
            int tx = position.x, ty = position.y;
            switch(direction) {
                case dir::up: --ty; break;
                case dir::down: ++ty; break;
                case dir::left: --tx; break;
                case dir::right: ++tx; break;
            }
            previous = &position;
            if (tx >= 0 && ty >= 0 && static_cast<int>(rep.size()) > ty && static_cast<int>(rep[ty].size()) > tx) {
                pos& tmp = rep[ty][tx];
                return tmp;
            }
            border.x = tx;
            border.y = ty;
            return border;
        }

        pos& prev() {
            return *previous;
        }

        void find_moves(std::unordered_set< ::move>& moves, bool& finished) {
            map copy = *this;
            auto& rep = copy.rep;
            bool changed = true;

            while (changed) {
                changed = false;
                for (auto row = rep.begin(); row != rep.end(); ++row) {
                    for (auto col = row->begin(); col != row->end(); ++col) {
                        // check if the field is of interest
                        if (col->f_type == field::floor || col->f_type == field::treasure || col->f_type == field::rock) {
                            // get neighbours
                            pos& up = copy.get(*col, dir::up);
                            pos& down = copy.get(*col, dir::down);
                            pos& left = copy.get(*col, dir::left);
                            pos& right = copy.get(*col, dir::right);
                            // ignore uninteresting rocks
                            if (col->f_type == field::rock && (up.f_type == field::floor || up.f_type == field::indiana || up.f_type == field::visited) && (down.f_type == field::floor || down.f_type == field::indiana || down.f_type == field::visited) && (left.f_type == field::floor || left.f_type == field::indiana || left.f_type == field::visited) && (right.f_type == field::floor || right.f_type == field::indiana || right.f_type == field::visited)) {
                                pos& upper_left = copy.get(up, dir::left);
                                pos& lower_left = copy.get(down, dir::left);
                                pos& upper_right = copy.get(up, dir::right);
                                pos& lower_right = copy.get(down, dir::right);
                                if ((upper_left.f_type == field::floor || upper_left.f_type == field::indiana || upper_left.f_type == field::visited) && (lower_left.f_type == field::floor || lower_left.f_type == field::indiana || lower_left.f_type == field::visited) && (upper_right.f_type == field::floor || upper_right.f_type == field::indiana || upper_right.f_type == field::visited) && (lower_right.f_type == field::floor || lower_right.f_type == field::indiana || lower_right.f_type == field::visited)) {
                                    continue;
                                }
                            }
                            // check if the field can be reached
                            if (up.f_type == field::visited || up.f_type == field::indiana) {
                                if (col->f_type == field::rock && (down.f_type == field::visited || down.f_type == field::floor || down.f_type == field::indiana)) {
                                    auto insertion = moves.insert( ::move(*col, dir::down));
                                    if (insertion.second) {
                                        changed = true;
                                    }
                                }
                                else if (col->f_type == field::floor) {
                                    changed = true;
                                    col->f_type = field::visited;
                                }
                                else if (col->f_type == field::treasure) {
                                    finished = true;
                                    return;
                                }
                            }
                            if (down.f_type == field::visited || down.f_type == field::indiana) {
                                if (col->f_type == field::rock && (up.f_type == field::visited || up.f_type == field::floor || up.f_type == field::indiana)) {
                                    auto insertion = moves.insert( ::move(*col, dir::up));
                                    if (insertion.second) {
                                        changed = true;
                                    }
                                }
                                else if (col->f_type == field::floor) {
                                    changed = true;
                                    col->f_type = field::visited;
                                }
                                else if (col->f_type == field::treasure) {
                                    finished = true;
                                    return;
                                }
                            }
                            if (left.f_type == field::visited || left.f_type == field::indiana) {
                                if (col->f_type == field::rock && (right.f_type == field::visited || right.f_type == field::floor || right.f_type == field::indiana)) {
                                    auto insertion = moves.insert( ::move(*col, dir::right));
                                    if (insertion.second) {
                                        changed = true;
                                    }
                                }
                                else if (col->f_type == field::floor) {
                                    changed = true;
                                    col->f_type = field::visited;
                                }
                                else if (col->f_type == field::treasure) {
                                    finished = true;
                                    return;
                                }
                            }
                            if (right.f_type == field::visited || right.f_type == field::indiana) {
                                if (col->f_type == field::rock && (left.f_type == field::visited || left.f_type == field::floor || left.f_type == field::indiana)) {
                                    auto insertion = moves.insert( ::move(*col, dir::left));
                                    if (insertion.second) {
                                        changed = true;
                                    }
                                }
                                else if (col->f_type == field::floor) {
                                    changed = true;
                                    col->f_type = field::visited;
                                }
                                else if (col->f_type == field::treasure) {
                                    finished = true;
                                    return;
                                }
                            }
                        }
                    }
                }
            }
        }

};

void map::init(const std::string& in) {
    bool first = true;

    for(auto i = in.begin(); i != in.end(); ++i) {
        if (*i == '\n') {
           first = false;
            rep.push_back({});
            continue;
        }
        else if (first) continue;

        field tmp(static_cast<field>(*i - '0'));
        pos current(rep.back().size(), rep.size() - 1, tmp);
        switch(tmp) {
            case field::indiana:
                start = current;
            case field::floor:
            case field::wall:
            case field::treasure:
            case field::rock:
                rep.back().push_back(current);
                break;
            default: std::cerr << "Invalid field value '" << (char) (static_cast<char>(tmp) + 48) << '\'' << std::endl;
        }
    }
}

std::string map::str() const {
    std::string t{};
    for (auto row = rep.begin(); row != rep.end(); ++row) {
        for (auto col = row->begin(); col != row->end(); ++col) {
            t += static_cast<char>(col->f_type) + '0';
        }
        t += '\n';
    }
    return t;
}

std::ostream& operator<<(std::ostream& os, const map& map_object) {
    return os << map_object.str();
}

int solve(map&& data) {
    int moves_taken = -1;
    bool finished = false;
    std::vector<map> current_maps{data}, next_maps;
    std::unordered_set<constellation> known_constellations;

    while (!finished && !current_maps.empty()) {
        for (auto i = current_maps.begin(); i != current_maps.end(); ++i) {
            std::unordered_set<move> moves;
            i->find_moves(moves, finished);
            auto result = known_constellations.insert(constellation(moves));
            if (!result.second) {
                continue; // this map constellation was already seen. prevent loops...
            }

            if (finished) break;
            for (auto m = moves.begin(); m != moves.end(); ++m) {
                map map_copy = *i;
                map_copy.move(*m);
                next_maps.push_back(map_copy);
            }


        }
        ++moves_taken;
        current_maps = std::move(next_maps);
    }
    if (!finished && current_maps.empty()) return -1;
    return moves_taken;
}

int main(int argc, char* argv[]) {
    map data{std::cin};

    int moves_taken = solve(std::move(data));
    if (moves_taken == -1) std::cout << "X" << std::endl;
    else std::cout << moves_taken << std::endl;

    return 0;
}

Editar: O programa pega sua entrada do stdin e ignora a primeira linha que contém o tamanho do mapa. Ele verifica se apenas os caracteres permitidos no mapa são usados, mas não verifica se há apenas um Indiana Jones e um baú do tesouro. Portanto, é possível colocar mais de um e o mínimo de movimentos necessários para alcançar um dos baús é impresso em stdout. Quaisquer caracteres inválidos no mapa são ignorados e o programa tentará calcular a menor quantidade de movimentos para o mapa resultante. O cálculo começará quando o stdin estiver fechado (no meu sistema ctrl + d).


1
Boa ressurreição :). É sempre divertido ver uma heurística inteligente.
ProgrammerDan

Estou meio triste com o meu voto. Ele empurrou sua reputação 10 maior do que um perfeito 1000
csga5000
Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.