C + PicoSAT , 2345 995 952 bytes
#include<picosat.h>
#define f(i,a)for(i=a;i;i--)
#define g(a)picosat_add(E,a)
#define b calloc(z+1,sizeof z)
#define e(a,q)if(a)A[q]^A[p]?l[q]++||(j[++k]=q):s[q]||(i[q]=p,u(q));
z,F,v,k,n,h,p,q,r,C,*x,*A,*i,*l,*s,*j,*m;u(p){s[m[++n]=p]=1;e(p%F-1,p-1)e(p%F,p+1)e(p>F,p-F)e(p<=F*v-F,p+F)}t(){f(q,k)l[j[q]]=0;f(q,n)s[m[q]]=0;k=n=0;i[p]=-1;u(p);}main(){void*E=picosat_init();if(scanf("%d,%d",&F,&v)-2)abort();z=F*v;for(x=b;scanf("%d,%d,%d",&r,&p,&q)==3;g(p),g(0))x[p=F-p+q*F]=r;f(p,F*v-F)if(p%F)g(p),g(p+1),g(p+F),g(p+F+1),g(0);for(A=b,i=b,l=b,s=b,j=b,m=b;!C;){picosat_sat(E,C=h=-1);f(p,F*v)A[p]=picosat_deref(E,p)>0,i[p]=0;f(p,F*v)if(x[p])if(i[q=p]){for(g(-q);i[q]+1;)q=i[q],g(-q);g(C=0);}else if(t(),r=n-x[p]){f(q,r<0?k:n)g(r<0?j[q]:-m[q]);g(C=0);}f(p,F*v)if(!i[p])if(t(),A[p]){g(-++z);f(q,k)g(j[q]);g(C=0);f(q,n)g(-m[q]),g(z),g(0);}else{C&=h++;f(q,k)g(-j[q]);g(++z);g(++z);g(0);f(q,F*v)g(s[q]-z),g(q),g(0);}}f(p,F*v)putchar(A[p]?35:46),p%F-1||puts("");}
Experimente online!
(Aviso: esse link do TIO é um URL de 30 kilobytes que contém uma cópia reduzida do PicoSAT 965, portanto, talvez você não consiga carregá-lo em alguns navegadores, mas carregue pelo menos no Firefox e no Chrome.)
Como funciona
Inicializamos o solucionador SAT com uma variável para cada célula (terra ou água) e apenas as seguintes restrições:
- Cada célula numerada é terra.
- Cada retângulo 2 × 2 possui pelo menos um terreno.
O restante das restrições é difícil de codificar diretamente no SAT; portanto, executamos o solucionador para obter um modelo, executamos uma sequência de pesquisas profundas para encontrar as regiões conectadas desse modelo e adicionamos restrições adicionais, como a seguir:
- Para cada célula numerada em uma região terrestre muito grande, adicione uma restrição de que deve haver pelo menos uma célula aquática entre as células terrestres atuais nessa região.
- Para cada célula numerada em uma região terrestre muito pequena, adicione uma restrição de que deve haver pelo menos uma célula terrestre entre as células de água atuais que fazem fronteira com essa região.
- Para cada célula numerada na mesma região terrestre que outra célula numerada, adicione uma restrição de que deve haver pelo menos uma célula aquática ao longo do caminho das células terrestres atuais entre elas (encontrada ao percorrer os ponteiros pai restantes da pesquisa inicial profunda )
- Para cada região terrestre, incluindo células não numeradas, adicione restrições que
- todas essas células terrestres atuais devem ser água ou
- pelo menos uma das células de água atuais que fazem fronteira com essa região deve ser terrestre.
- Para cada região de água, adicione restrições que
- todas essas células de água atuais devem ser terrestres ou
- todas as células que não sejam as células aquáticas atuais devem estar em terra ou
- pelo menos uma das células terrestres atuais que fazem fronteira com essa região deve ser água.
Aproveitando a interface incremental da biblioteca PicoSAT, podemos executar novamente o solucionador imediatamente, incluindo as restrições adicionadas, preservando todas as inferências anteriores feitas pelo solucionador. O PicoSAT nos fornece um novo modelo e continuamos repetindo as etapas acima até que a solução seja válida.
Isso é notavelmente eficaz; resolve instâncias 15 × 15 e 20 × 20 em uma pequena fração de segundo.
(Agradecemos a Lopsy por sugerir essa ideia de restringir interativamente as regiões conectadas em um solucionador incremental de SAT, há um tempo.)
Uma página aleatória de quebra-cabeças rígidos 15 × 15 ( 5057541 , 5122197 , 5383030 , 6275294 , 6646970 , 6944232 ):
15,15 1,5,1 3,9,1 5,4,2 1,6,2 2,11,2 2,2,3 3,9,3 2,4,4 1,10,4 5,12,4 3,1,5 1,3,5 3,8,5 1,13,5 5,5,6 1,12,6 1,2,8 2,9,8 1,1,9 2,6,9 6,11,9 3,13,9 5,2,10 2,4,10 4,10,10 1,5,11 2,12,11 2,3,12 2,8,12 5,10,12 1,5,13 1,9,13 1,6,14 1,8,14
15,15 4,2,0 2,5,0 1,3,1 2,14,2 1,3,3 2,11,3 1,13,3 1,5,4 11,7,4 1,9,4 1,4,5 1,8,5 2,10,5 12,14,5 3,5,6 1,4,7 2,10,7 3,9,8 4,0,9 1,4,9 1,6,9 3,10,9 1,5,10 1,7,10 8,9,10 1,1,11 10,3,11 2,11,11 6,0,12 1,11,13 2,9,14 1,12,14
15,15 2,2,0 8,10,0 2,3,1 2,14,2 2,3,3 3,5,3 3,9,3 2,11,3 5,13,3 6,0,4 3,7,4 3,3,5 2,11,5 2,6,6 1,8,6 1,4,7 2,10,7 1,6,8 2,8,8 5,3,9 2,11,9 2,7,10 7,14,10 2,1,11 4,3,11 2,5,11 1,9,11 2,11,11 2,0,12 4,6,13 1,11,13 3,4,14 1,12,14
15,15 2,0,0 2,4,0 3,6,1 2,10,1 1,13,1 2,5,2 2,12,2 3,0,3 2,2,3 4,7,3 2,9,3 1,14,3 1,4,4 1,8,4 2,12,5 4,2,6 3,4,6 1,14,6 7,7,7 1,10,8 2,12,8 3,2,9 2,14,9 2,0,10 2,6,10 1,10,10 2,5,11 4,7,11 2,12,11 1,14,11 3,2,12 3,9,12 1,1,13 2,4,13 3,8,13 2,10,14 5,14,14
15,15 1,3,0 1,14,0 3,7,1 3,10,1 2,13,1 3,1,2 4,5,2 2,12,3 3,3,4 1,8,4 1,1,5 3,5,5 1,9,5 5,13,5 3,3,6 1,8,6 2,2,7 2,12,7 1,6,8 1,8,8 2,11,8 2,1,9 4,5,9 2,9,9 2,13,9 2,6,10 4,11,10 1,2,11 3,9,12 2,13,12 3,1,13 2,4,13 3,7,13 1,0,14
15,15 2,8,0 2,4,1 2,7,1 1,10,1 6,4,3 1,1,4 12,5,4 3,11,4 5,13,4 3,10,5 3,0,6 1,6,6 2,8,6 4,13,7 2,3,8 1,6,8 3,8,8 2,14,8 2,4,9 5,1,10 4,3,10 1,9,10 6,13,10 3,8,11 1,10,11 3,4,13 2,7,13 3,10,13 1,6,14 1,14,14
Uma página aleatória de 20 × 20 quebra-cabeças normais ( 536628 , 3757659 ):
20,20 1,0,0 3,2,0 2,6,0 1,13,0 3,9,1 3,15,1 2,7,2 3,13,2 3,0,3 2,3,3 3,18,3 3,5,4 2,9,4 2,11,4 2,16,4 1,0,5 2,7,5 1,10,5 1,19,5 3,2,6 1,11,6 2,17,6 2,0,7 3,4,7 5,6,7 2,9,7 4,13,7 3,15,7 1,3,8 1,10,8 1,14,9 2,18,9 3,1,10 2,4,10 1,8,10 1,10,10 3,12,10 3,16,10 1,9,11 1,17,11 2,19,11 2,0,12 2,2,12 1,4,12 4,6,12 2,13,12 2,15,12 1,14,13 2,17,13 1,3,14 2,5,14 4,7,14 2,15,14 3,0,15 1,2,15 2,13,15 3,18,15 3,7,16 7,10,16 1,17,16 2,0,17 2,3,17 2,5,17 3,11,17 3,15,17 1,0,19 1,2,19 1,4,19 2,6,19 5,8,19 1,11,19 1,13,19 3,15,19 2,18,19
20,20 1,0,0 1,4,0 5,8,0 1,17,0 1,19,0 2,17,2 3,6,3 2,10,3 2,12,3 4,14,3 6,0,4 3,4,4 4,7,4 1,11,4 1,18,4 1,6,5 3,12,5 4,15,5 4,4,6 2,16,6 2,19,6 6,0,7 3,10,7 2,12,8 2,17,8 3,3,9 2,5,9 4,8,9 2,10,9 3,0,10 1,2,10 5,14,10 2,16,10 2,19,10 7,7,11 3,12,12 2,17,12 2,2,13 4,4,13 3,6,13 4,14,13 3,0,14 1,3,14 1,5,14 3,16,14 1,2,15 1,9,15 2,11,15 5,13,15 3,19,15 1,4,16 3,6,16 1,3,17 1,12,17 1,14,17 1,16,17 6,0,19 2,2,19 3,5,19 2,7,19 5,9,19 1,11,19 2,13,19 1,15,19 4,17,19