Terence Tao recentemente provou ser uma forma fraca da conjectura de Goldbach! Vamos explorá-lo!
Dado um número inteiro ímpar n > 1
, escreva n
como uma soma de até 5 números primos. Pegue a entrada como quiser e dê a saída como quiser. Por exemplo,
def g(o):
for l in prime_range(o+1):
if l == o:
return l,
for d in prime_range(l+1):
for b in prime_range(d+1):
if l+d+b == o:
return l,d,b
for c in prime_range(b+1):
for h in prime_range(c+1):
if l+d+b+c+h == o:
return l,d,b,c,h
é um código sábio que recebe um número inteiro como entrada e retorna uma lista de números inteiros como saída cuja soma é n
. Pelo teorema de Tao, isso sempre terminará!
Entrada
Um número inteiro ímpar n
. Você decide como receber a entrada, mas se for estranho, explique-a.
Resultado
Bastante aberto. Retorne uma lista. Imprima uma string. Me dê um, alguns, ou todos. Deixe a porcaria na pilha (GS, Piet, etc) ou em um bloco de memória consecutivo (acessível) (BF, etc) de maneira previsível. Para esses casos posteriores, explique a saída. Em todos os casos, o que você devolve / imprime / o que deve ser uma representação direta de uma partição de n
primos com menos de 6 partes.
Pontuação
Isso é código de golfe, a menor contagem de bytes ganha.
Bônus! se a palavra 'goldbach' aparecer como uma subsequência (não necessariamente consecutiva; apenas em ordem. O caso não importa) do seu programa subtraia 8 pontos. O código acima é um exemplo disso.