Imprimir todos os quadrados resistentes de 3 por 3


24

Um quadrado robusto (semelhante a um quadrado mágico ) é um arranjo dos números inteiros 1 a N 2 em uma grade N por N, de modo que cada sub-grade 2 por 2 tenha a mesma soma.

Por exemplo, para N = 3, um quadrado robusto é

1 5 3
9 8 7
4 2 6

porque os quatro subgrades 2 por 2

1 5
9 8
5 3
8 7
9 8
4 2
8 7
2 6

todos somam a mesma quantia, 23:

23 = 1 + 5 + 9 + 8 = 5 + 3 + 8 + 7 = 9 + 8 + 4 + 2 = 8 + 7 + 2 + 6

Agora, existem quadrados robustos para valores mais altos de versões N e até retangulares, mas sua única tarefa neste desafio é gerar todos os possíveis quadrados robustos de 3 a 3. Existem exatamente 376 quadrados resistentes de 3 por 3, incluindo aqueles que são reflexos ou rotações de outros, e nem todos têm a mesma soma de 23.

Escreva um programa ou função que não receba nenhuma entrada, mas imprima ou retorne uma sequência de todos os 376 quadrados robustos em qualquer ordem, separados por linhas vazias, com até duas novas linhas finais à direita. Cada quadrado deve consistir em três linhas de três dígitos decimais diferentes de zero, separados por espaços.

Aqui está um exemplo de saída válido:

1 5 3
9 8 7
4 2 6

1 5 6
8 7 3
4 2 9

1 5 6
8 9 3
2 4 7

1 5 7
9 6 3
2 4 8

1 6 2
8 9 7
4 3 5

1 6 2
9 7 8
4 3 5

1 6 3
9 8 7
2 5 4

1 6 7
8 5 2
3 4 9

1 6 7
9 4 3
2 5 8

1 7 2
9 4 8
5 3 6

1 7 2
9 6 8
3 5 4

1 7 4
8 3 5
6 2 9

1 7 4
9 2 6
5 3 8

1 7 6
9 2 4
3 5 8

1 8 2
5 9 4
6 3 7

1 8 3
6 5 4
7 2 9

1 8 3
9 2 7
4 5 6

1 8 4
5 7 2
6 3 9

1 8 4
6 9 3
2 7 5

1 8 4
9 3 6
2 7 5

1 8 6
7 3 2
4 5 9

1 9 2
5 6 4
7 3 8

1 9 2
6 4 5
7 3 8

1 9 2
6 8 5
3 7 4

1 9 2
8 3 7
4 6 5

1 9 3
7 2 5
6 4 8

1 9 3
7 6 5
2 8 4

1 9 4
5 8 2
3 7 6

1 9 4
6 7 3
2 8 5

1 9 4
8 2 5
3 7 6

1 9 5
7 2 3
4 6 8

1 9 5
7 4 3
2 8 6

2 3 5
9 8 6
4 1 7

2 3 6
9 7 5
4 1 8

2 4 3
8 9 7
5 1 6

2 4 3
9 7 8
5 1 6

2 4 6
7 8 3
5 1 9

2 4 7
8 9 3
1 5 6

2 4 8
9 6 3
1 5 7

2 5 3
9 4 8
6 1 7

2 5 4
9 3 7
6 1 8

2 5 4
9 8 7
1 6 3

2 5 7
6 8 1
4 3 9

2 5 7
6 9 1
3 4 8

2 5 8
7 6 1
3 4 9

2 5 8
9 4 3
1 6 7

2 6 1
7 9 8
5 3 4

2 6 1
8 7 9
5 3 4

2 6 3
5 9 4
7 1 8

2 6 4
5 8 3
7 1 9

2 6 7
9 1 4
3 5 8

2 6 8
7 4 1
3 5 9

2 7 1
8 4 9
6 3 5

2 7 1
8 6 9
4 5 3

2 7 3
5 6 4
8 1 9

2 7 3
6 4 5
8 1 9

2 7 3
9 1 8
5 4 6

2 7 5
4 8 1
6 3 9

2 7 5
6 9 3
1 8 4

2 7 5
9 3 6
1 8 4

2 8 1
4 9 5
7 3 6

2 8 4
7 6 5
1 9 3

2 8 5
4 9 1
3 7 6

2 8 5
6 7 3
1 9 4

2 8 6
7 4 3
1 9 5

2 9 1
4 6 5
8 3 7

2 9 1
5 4 6
8 3 7

2 9 1
5 8 6
4 7 3

2 9 1
7 3 8
5 6 4

2 9 3
6 1 5
7 4 8

2 9 4
3 7 1
6 5 8

2 9 4
3 8 1
5 6 7

2 9 5
4 7 1
3 8 6

2 9 5
7 1 4
3 8 6

2 9 6
5 3 1
4 7 8

2 9 6
5 4 1
3 8 7

3 2 5
9 8 7
4 1 6

3 2 6
8 9 5
4 1 7

3 2 7
9 6 5
4 1 8

3 4 2
7 9 8
6 1 5

3 4 2
8 7 9
6 1 5

3 4 5
9 2 7
6 1 8

3 4 8
6 9 1
2 5 7

3 4 9
7 6 1
2 5 8

3 4 9
8 5 2
1 6 7

3 5 1
7 8 9
6 2 4

3 5 2
8 4 9
7 1 6

3 5 4
9 1 8
6 2 7

3 5 4
9 6 8
1 7 2

3 5 8
9 1 4
2 6 7

3 5 8
9 2 4
1 7 6

3 5 9
7 4 1
2 6 8

3 6 1
7 8 9
4 5 2

3 6 2
4 9 5
8 1 7

3 6 8
7 1 2
4 5 9

3 7 2
4 6 5
9 1 8

3 7 2
5 4 6
9 1 8

3 7 2
8 1 9
6 4 5

3 7 4
6 1 5
8 2 9

3 7 4
6 8 5
1 9 2

3 7 6
4 9 1
2 8 5

3 7 6
5 8 2
1 9 4

3 7 6
8 2 5
1 9 4

3 8 1
4 5 6
9 2 7

3 8 1
7 2 9
6 5 4

3 8 4
2 9 1
6 5 7

3 8 6
4 7 1
2 9 5

3 8 6
7 1 4
2 9 5

3 8 7
5 4 1
2 9 6

3 9 1
5 2 7
8 4 6

3 9 1
5 6 7
4 8 2

3 9 2
5 1 6
8 4 7

3 9 4
2 6 1
7 5 8

3 9 4
2 8 1
5 7 6

3 9 6
4 2 1
5 7 8

3 9 6
5 1 2
4 8 7

4 1 6
9 8 7
3 2 5

4 1 7
8 9 5
3 2 6

4 1 7
9 8 6
2 3 5

4 1 8
9 6 5
3 2 7

4 1 8
9 7 5
2 3 6

4 2 6
9 8 7
1 5 3

4 2 7
6 9 3
5 1 8

4 2 7
9 3 6
5 1 8

4 2 8
7 6 3
5 1 9

4 2 9
8 7 3
1 5 6

4 3 5
8 9 7
1 6 2

4 3 5
9 2 8
6 1 7

4 3 5
9 7 8
1 6 2

4 3 7
5 8 2
6 1 9

4 3 7
8 2 5
6 1 9

4 3 7
9 1 6
5 2 8

4 3 9
6 8 1
2 5 7

4 5 2
7 3 9
8 1 6

4 5 2
7 8 9
3 6 1

4 5 3
8 1 9
7 2 6

4 5 3
8 6 9
2 7 1

4 5 6
3 8 1
7 2 9

4 5 6
9 2 7
1 8 3

4 5 9
7 1 2
3 6 8

4 5 9
7 3 2
1 8 6

4 6 2
3 8 5
9 1 7

4 6 5
2 9 1
7 3 8

4 6 5
8 3 7
1 9 2

4 6 8
7 2 3
1 9 5

4 7 1
5 3 8
9 2 6

4 7 1
6 2 9
8 3 5

4 7 3
5 1 6
9 2 8

4 7 3
5 8 6
2 9 1

4 7 5
2 6 1
8 3 9

4 7 8
5 3 1
2 9 6

4 8 1
2 7 5
9 3 6

4 8 1
3 9 6
5 7 2

4 8 1
6 3 9
5 7 2

4 8 2
5 6 7
3 9 1

4 8 3
1 9 2
7 5 6

4 8 6
3 2 1
7 5 9

4 8 7
5 1 2
3 9 6

4 9 1
2 8 5
6 7 3

4 9 1
3 7 6
5 8 2

4 9 1
5 2 8
6 7 3

4 9 2
1 7 3
8 5 6

4 9 2
1 8 3
7 6 5

4 9 3
1 6 2
8 5 7

4 9 3
1 8 2
6 7 5

4 9 5
2 3 1
7 6 8

4 9 5
3 1 2
7 6 8

4 9 6
3 2 1
5 8 7

5 1 6
8 9 7
2 4 3

5 1 6
9 7 8
2 4 3

5 1 8
6 9 3
4 2 7

5 1 8
9 3 6
4 2 7

5 1 9
7 6 3
4 2 8

5 1 9
7 8 3
2 4 6

5 2 3
7 8 9
6 1 4

5 2 8
7 3 4
6 1 9

5 2 8
9 1 6
4 3 7

5 3 2
6 8 9
7 1 4

5 3 4
7 9 8
2 6 1

5 3 4
8 2 9
7 1 6

5 3 4
8 7 9
2 6 1

5 3 6
9 4 8
1 7 2

5 3 8
4 7 1
6 2 9

5 3 8
7 1 4
6 2 9

5 3 8
9 2 6
1 7 4

5 4 3
7 2 9
8 1 6

5 4 6
3 7 2
8 1 9

5 4 6
9 1 8
2 7 3

5 6 4
1 9 2
8 3 7

5 6 4
7 3 8
2 9 1

5 6 7
3 8 1
2 9 4

5 7 2
1 8 4
9 3 6

5 7 2
3 9 6
4 8 1

5 7 2
6 3 9
4 8 1

5 7 4
1 6 2
9 3 8

5 7 6
2 3 1
8 4 9

5 7 6
2 8 1
3 9 4

5 7 6
3 1 2
8 4 9

5 7 8
4 2 1
3 9 6

5 8 2
1 9 4
6 7 3

5 8 2
3 7 6
4 9 1

5 8 7
3 2 1
4 9 6

5 9 1
3 2 7
8 6 4

5 9 1
3 4 7
6 8 2

5 9 2
1 7 4
6 8 3

5 9 2
4 1 7
6 8 3

5 9 4
1 3 2
8 6 7

5 9 4
2 1 3
8 6 7

6 1 4
7 8 9
5 2 3

6 1 5
7 9 8
3 4 2

6 1 5
8 7 9
3 4 2

6 1 7
9 2 8
4 3 5

6 1 7
9 4 8
2 5 3

6 1 8
9 2 7
3 4 5

6 1 8
9 3 7
2 5 4

6 1 9
5 8 2
4 3 7

6 1 9
7 3 4
5 2 8

6 1 9
8 2 5
4 3 7

6 2 3
5 9 8
7 1 4

6 2 4
7 8 9
3 5 1

6 2 7
9 1 8
3 5 4

6 2 8
5 4 3
7 1 9

6 2 9
4 7 1
5 3 8

6 2 9
7 1 4
5 3 8

6 2 9
8 3 5
1 7 4

6 3 2
5 7 9
8 1 4

6 3 5
8 4 9
2 7 1

6 3 7
5 2 4
8 1 9

6 3 7
5 9 4
1 8 2

6 3 9
4 8 1
2 7 5

6 3 9
5 7 2
1 8 4

6 4 2
3 8 7
9 1 5

6 4 5
2 7 3
9 1 8

6 4 5
8 1 9
3 7 2

6 4 8
7 2 5
1 9 3

6 5 1
3 7 8
9 2 4

6 5 1
3 9 8
7 4 2

6 5 4
1 8 3
9 2 7

6 5 4
7 2 9
3 8 1

6 5 7
2 4 1
8 3 9

6 5 7
2 9 1
3 8 4

6 5 8
3 2 1
7 4 9

6 5 8
3 7 1
2 9 4

6 7 1
4 2 9
8 5 3

6 7 3
1 9 4
5 8 2

6 7 3
2 8 5
4 9 1

6 7 3
5 2 8
4 9 1

6 7 5
1 3 2
9 4 8

6 7 5
1 8 2
4 9 3

6 7 5
2 1 3
9 4 8

6 8 1
2 3 7
9 5 4

6 8 2
3 4 7
5 9 1

6 8 3
1 7 4
5 9 2

6 8 3
4 1 7
5 9 2

6 8 4
1 2 3
9 5 7

6 9 2
1 3 5
8 7 4

6 9 2
1 4 5
7 8 3

6 9 3
1 2 4
8 7 5

6 9 3
2 1 5
7 8 4

6 9 4
1 2 3
7 8 5

7 1 4
5 9 8
6 2 3

7 1 4
6 8 9
5 3 2

7 1 6
8 2 9
5 3 4

7 1 6
8 4 9
3 5 2

7 1 8
5 9 4
2 6 3

7 1 9
5 4 3
6 2 8

7 1 9
5 8 3
2 6 4

7 2 3
5 6 9
8 1 4

7 2 4
3 9 6
8 1 5

7 2 4
6 3 9
8 1 5

7 2 6
8 1 9
4 5 3

7 2 9
3 8 1
4 5 6

7 2 9
6 5 4
1 8 3

7 3 4
2 8 5
9 1 6

7 3 4
5 2 8
9 1 6

7 3 4
6 1 9
8 2 5

7 3 6
4 2 5
9 1 8

7 3 6
4 9 5
2 8 1

7 3 8
2 9 1
4 6 5

7 3 8
5 6 4
1 9 2

7 3 8
6 4 5
1 9 2

7 4 2
3 9 8
6 5 1

7 4 8
6 1 5
2 9 3

7 4 9
3 2 1
6 5 8

7 5 1
3 6 9
8 4 2

7 5 2
1 8 6
9 3 4

7 5 2
1 9 6
8 4 3

7 5 6
1 4 2
9 3 8

7 5 6
1 9 2
4 8 3

7 5 8
2 6 1
3 9 4

7 5 9
3 2 1
4 8 6

7 6 1
2 5 8
9 4 3

7 6 1
3 4 9
8 5 2

7 6 2
4 1 9
8 5 3

7 6 5
1 8 3
4 9 2

7 6 8
2 3 1
4 9 5

7 6 8
3 1 2
4 9 5

7 8 3
1 4 5
6 9 2

7 8 4
2 1 5
6 9 3

7 8 5
1 2 3
6 9 4

8 1 4
5 6 9
7 2 3

8 1 4
5 7 9
6 3 2

8 1 5
3 9 6
7 2 4

8 1 5
6 3 9
7 2 4

8 1 6
7 2 9
5 4 3

8 1 6
7 3 9
4 5 2

8 1 7
4 9 5
3 6 2

8 1 9
3 7 2
5 4 6

8 1 9
5 2 4
6 3 7

8 1 9
5 6 4
2 7 3

8 1 9
6 4 5
2 7 3

8 2 4
3 6 7
9 1 5

8 2 5
4 3 7
9 1 6

8 2 5
6 1 9
7 3 4

8 2 6
3 4 5
9 1 7

8 2 9
6 1 5
3 7 4

8 3 5
1 7 4
9 2 6

8 3 5
4 1 7
9 2 6

8 3 5
6 2 9
4 7 1

8 3 7
1 9 2
5 6 4

8 3 7
4 6 5
2 9 1

8 3 7
5 4 6
2 9 1

8 3 9
2 4 1
6 5 7

8 3 9
2 6 1
4 7 5

8 4 2
3 6 9
7 5 1

8 4 3
1 9 6
7 5 2

8 4 6
5 2 7
3 9 1

8 4 7
5 1 6
3 9 2

8 4 9
2 3 1
5 7 6

8 4 9
3 1 2
5 7 6

8 5 2
1 6 7
9 4 3

8 5 2
3 4 9
7 6 1

8 5 3
4 1 9
7 6 2

8 5 3
4 2 9
6 7 1

8 5 6
1 2 3
9 4 7

8 5 6
1 7 3
4 9 2

8 5 7
1 6 2
4 9 3

8 6 2
1 4 7
9 5 3

8 6 3
2 1 7
9 5 4

8 6 4
3 2 7
5 9 1

8 6 7
1 3 2
5 9 4

8 6 7
2 1 3
5 9 4

8 7 4
1 3 5
6 9 2

8 7 5
1 2 4
6 9 3

9 1 5
3 6 7
8 2 4

9 1 5
3 8 7
6 4 2

9 1 6
2 8 5
7 3 4

9 1 6
4 3 7
8 2 5

9 1 6
5 2 8
7 3 4

9 1 7
3 4 5
8 2 6

9 1 7
3 8 5
4 6 2

9 1 8
2 7 3
6 4 5

9 1 8
4 2 5
7 3 6

9 1 8
4 6 5
3 7 2

9 1 8
5 4 6
3 7 2

9 2 4
3 7 8
6 5 1

9 2 6
1 7 4
8 3 5

9 2 6
4 1 7
8 3 5

9 2 6
5 3 8
4 7 1

9 2 7
1 8 3
6 5 4

9 2 7
4 5 6
3 8 1

9 2 8
5 1 6
4 7 3

9 3 4
1 8 6
7 5 2

9 3 6
1 8 4
5 7 2

9 3 6
2 7 5
4 8 1

9 3 8
1 4 2
7 5 6

9 3 8
1 6 2
5 7 4

9 4 3
1 6 7
8 5 2

9 4 3
2 5 8
7 6 1

9 4 7
1 2 3
8 5 6

9 4 8
1 3 2
6 7 5

9 4 8
2 1 3
6 7 5

9 5 3
1 4 7
8 6 2

9 5 4
2 1 7
8 6 3

9 5 4
2 3 7
6 8 1

9 5 7
1 2 3
6 8 4

Seu programa deve produzir esses mesmos 376 quadrados robustos, mas não necessariamente nessa ordem. O resultado não precisa ser determinístico, ou seja, você pode gerá-los em diferentes ordens, em diferentes execuções, desde que estejam todos lá.

O código mais curto em bytes vence.

O tópico de quadrados robustos teve origem nesta minha mensagem de bate-papo , que levou a uma grande quantidade de discussões sobre suas propriedades e como gerá-las. Adereços a Peter Taylor , feersum e Sp3000 por continuar a discussão, e especialmente a El'endia Starman por redigir uma sequência OEIS correspondente .


Não tenho certeza se interpretei a regra de nova linha à direita corretamente. A saída da minha revisão anterior terminou com 5 7 3\n\n, portanto, há uma linha em branco após o último quadrado. Isso é admissível?
Dennis

2
Yayyy eu recebo adereços extras! : P
El'endia Starman

Talvez hospede a saída em outro lugar para que não demore muito nesta página.
Ryan

Respostas:


9

Pitão, 38 34 33 32 bytes

Vfq2l{sMX2.DR2.:T5b.pS9Vc3NjdH)k

5 bytes salvos na formatação por Jakube

1 byte economizado alternando para as substrings de Peter Taylor de comprimento cinco, remova a abordagem dos médios

Demora cerca de um minuto e meio para executar na minha máquina.

Como funciona em alto nível:

  • Gere todas as permutações ( .pS9)

  • Comprimento do formulário 5 substrings ( .:T5)

  • Remova o elemento central de cada ( .DR2)

  • Anexe uma nova linha ao elemento central, marcando-a com uma soma necessariamente diferente ( X2 ... b)

  • Filtre os quadrados em que todas essas somas são iguais ( fq2l{)

  • Formatar e imprimir ( V ... Vc3NjdH)k)


Pique Ndentro do loop ( V...Vc3N) em vez de antes do loop ( VcL3...VN). Salva um byte adicional.
Jakube 23/10

8

CJam, 40 38 bytes

A,1>e!3f/{2{2few:::+z}*:|,1=},Ma*Sf*N*

Graças a @PeterTaylor por jogar fora 2 bytes!

Isso termina instantaneamente usando o interpretador Java. Também funciona com o intérprete online, mas requer um pouco de paciência. Experimente online.

Execução de teste

$ cjam sturdy-squares.cjam | head -n 8
1 5 3
9 8 7
4 2 6

1 5 6
8 7 3
4 2 9

$ cjam sturdy-squares.cjam | tail -n 8

9 5 4
2 3 7
6 8 1

9 5 7
1 2 3
6 8 4
$

Como funciona

A,1>     e# Push [1 ... 9].
e!       e# Push the array of all permutations of that array.
3f/      e# Split each into rows of length 3.
{        e# Filter; push the permutation, then:
  2{     e#   Do the following twice:
    2few e#     Split each row into overlapping splices of length 2.
         e#       [a b c] -> [[a b] [b c]]
    :::+ e#     Reduce each innermost vector to its sum.
         e#       [[a b] [b c]] -> [a+b b+c]
    z    e#     Transpose rows with columns.
  }*     e#   The result is [[s t] [u v]], the sums of all 2x2 squares.
  :|     e#   Perform set union of the pairs of sums.
  ,1=    e#   Check if the length of the result is 1 (unique sum).
},       e# Keep the array if the result was 1.
{        e# For each kept array:
  Sf*    e#   Join the elements of its rows, separating by spaces.
  ~M     e#   Dump the resulting strings and an empty string on the stack.
}%       e# Collect everything in an array.
N*       e# Join the strings, separating by linefeeds.

+1 E fiquei feliz com a brevidade da minha resposta!
DavidC

Agora que eu consegui golf minha resposta suficiente para ficar um caractere à frente: Ma*Sf*N*salva dois sobre{Sf*~M}%N*
Peter Taylor

@ PeterTaylor De fato. Obrigado!
Dennis

8

Python 3, 169 168 164 bytes

Peguei o programa que usei para investigar esses quadrados / retângulos resistentes e joguei-o para baixo. Jogou 4 bytes graças ao otakucode.

from itertools import*
r=range(1,10)
for p in permutations(r,6):
 x,y=p[0],p[5];q=p[:5]+(x+p[3]-p[2],y,y+p[1]-x,p[2]+y-x)
 if set(q)==set(r):print('%s %s %s\n'*3%q)

Explicação

Dado um quadrado robusto parcialmente preenchido como este,

a b c
d e ?
g ? ?

Os restantes três entradas são unicamente determinado, e são a+d-c, a+b-ge c+g-a. Então, eu gere todas as permutações de 0..8 com seis elementos, calculo o restante e depois verifico se o conjunto disso é igual ao conjunto de 0..8. Se for, imprimo a grade.


Para referência, aqui está o original (com comentários e código estranho removido):

from itertools import permutations as P

n = 3
m = 3
permutes = P(range(m*n), m+n)

counter = 0
for p in permutes:
    grid = [p[:n]]
    for i in range(m-1):
        grid.append([p[n+i]]+[-1]*(n-1))
    grid[1][1] = p[-1]

    s = p[0]+p[1]+p[n]+p[-1]

    has = list(p)

    fail = 0
    for y in range(1,m):
        for x in range(1,n):
            if x == y == 1: continue

            r = s-(grid[y-1][x-1] + grid[y-1][x] + grid[y][x-1])

            if r not in has and 0 <= r < m*n:
                grid[y][x] = r
                has.append(r)
            else:
                fail = 1
                break

        if fail: break

    if not fail:
        counter += 1

print(counter)

amo essa técnica #
don bright

11
Abordagem muito agradável! Você ainda pode salvar alguns bytes ... no loop, x, y = p [0], p [5] e depois q = p + (y + p [3] -p [2], y + p [1 ] -x, p [2] + xy)
otakucode 23/10

@otakucode: Obrigado pela dica!
El'endia Starman 23/10/2015

5

Mathematica 147 166 155 149 bytes

Isso gera as permutações de {1,2,3 ... 9} e seleciona casos para os quais

(soma dos dígitos nas posições {1,2,4,5}) =

(soma dos dígitos nas posições {2,3,5,6}) =

(soma dos dígitos nas posições {4,5,7,8}) =

(soma dos dígitos nas posições {5,6,8,9})

f@s_:=Length@Tally[Tr@Extract[s,#]&/@Table[{{0},{1},{3},{4}}+k,{k,{1,2,4,5}}]]>1;
Row[Grid/@(#~Partition~3&/@Select[Permutations@Range@9,f@#&]),"\n"]

Saída (uma visão parcial)

saída


Length[%]

376


5

CJam ( 39 37 bytes)

A,1>e!{5ew{2Mtz}2*::+)-!},3f/Ma*Sf*N*

Demonstração on-line (aviso: pode levar mais de um minuto para ser executado, acionando as solicitações "Interromper este script?" No navegador).

Funciona filtrando todas as grades possíveis usando 5ewpara mapear

[a b c d e f g h i]

para

[[a b c d e]
 [b c d e f]
 [c d e f g]
 [d e f g h]
 [e f g h i]]

e, em seguida, descartar o elemento do meio e o elemento do meio um do outro para obter

[[a b d e]
 [b c e f]
 [d e g h]
 [e f h i]]

quais são os quatro quadrados.


Uau, isso é brilhante.
El'endia Starman 23/10/2015

5

Python 3.5, 135 bytes

from itertools import*
for x in permutations(range(1,10)):eval((("=="+"+x[%s]"*3)*4)[2:]%(*"013125367578",))and print("%d %d %d\n"*3%x)

Verifica diretamente a soma de cada quadrado, menos o meio. Muito provavelmente ainda jogável pela itertoolsregra de ouro " é desnecessária".


2

Python2 327 271 270 263 260 bytes

z,v,s={},3,range(1,10)
while len(z)<376:
 for i in range(8):v=hash(`v`);s[i],s[v%9]=s[v%9],s[i]
 m=map(lambda i:sum(s[i:i+5])-s[i+2],[0,1,3,4]);T=tuple(s)
 if all(x==m[0] for x in m) and not T in z:
  z[T]=1;print '%i %i %i\n'*3 % tuple(s[0:3]+s[3:6]+s[6:9])

------------

Isso é ... não tão curto, mas não usa bibliotecas. Isso permuta aleatoriamente um quadrado, verifica se há magia, imprime e grava para evitar duplicatas. Depois de imprimir 376 quadrados mágicos únicos, ele para.

Peguei emprestado o gerador de números aleatórios pseudo da entrada de Keith Randall para o golfe chamado " Construa um gerador de números aleatórios que passe nos testes de Diehard "

z,v={},3
def R(x,y):global v;v=hash(`v`);return v
while len(z)<376:
 s=sorted(range(1,10),cmp=R)
 m=[sum(q) for q in map(lambda p:s[p[0]:p[1]+1]+s[p[2]:p[3]+1], [[i,i+1,i+3,i+4] for i in [0,1,3,4]] )]
 if all(x==m[0] for x in m) and not tuple(s) in z.keys():
  z[tuple(s)]=1;print '%i %i %i\n'*3 % tuple(s[0:3]+s[3:6]+s[6:9])

De-golfe

# each magic square is an array of 9 numbers
#
#for example [1 9 3 7 2 5 6 4 8] 
#
#represents the following square
#
#1 9 3
#7 2 5
#6 4 8
#
# to generate a random square with each number represented only once,
# start with [1 2 3 4 5 6 7 8 9] and sort, but use a random comparison
# function so the sorting process becomes instead a random permutation.
# 
# to check each 2x2 subsquare for sums, look at the indexes into the
# array: [[0,1,3,4] = upper left,[1,2,4,5] = upper right, etc.
#
# to keep track of already-printed magic squares, use a dictionary    
# (associative array) where the 9-element array data is the key. 

from random import *
def magic(s):
 quads=[]
 for a,b,c,d in [[0,1,3,4],[1,2,4,5],[3,4,6,7],[4,5,7,8]]:
  quads+=[s[a:b+1]+s[c:d+1]]
 summ=[sum(q) for q in quads]
 same= all(x==summ[0] for x in summ)
 #print quads
 #print 'sum',summ
 #print 'same',same
 return same

magicsquares={}
while len(magicsquares.keys())<376:
        sq = sorted(range(1,10),key=lambda x:random())
        if magic(sq) and not magicsquares.has_key(tuple(sq)):
                magicsquares[tuple(sq)]=1
                print sq[0:3],'\n',sq[3:6],'\n',sq[6:9],'\n'

Nada aleatório precisa estar acontecendo. Existem exatamente 376 soluções quadradas distintas e você precisa produzir cada uma delas exatamente uma vez.
Hobbies de Calvin

imprimi exatamente 376 soluções quadradas distintas e produzi cada uma delas exatamente uma vez. a aleatoriedade não é proibida na descrição, nem nas meta-
don bright

Tudo bem, é justo.
Hobbies de Calvin

Você pode usar um gerador de números aleatórios pior, contanto que ele ofereça todos os quadrados necessários.
lirtosiast

1

Ruby 133

a=[]
[*1..9].permutation{|x|[0,1,3,4].map{|i|x[i]+x[i+1]+x[i+3]+x[i+4]}.uniq.size<2&&a<<x.each_slice(3).map{|s|s*' '}*'
'}
$><<a*'

'

Abordagem direta de força bruta. Teste aqui .


0

J, 83 bytes

([:;@,(<LF),.~[:(<@(LF,~":)"1@#~([:*/2=/\[:,2 2+/@,;._3])"2)(3 3)($"1)1+!A.&i.])@9:

Esta é uma função que gera uma string contendo os 376 quadrados robustos. Usa força bruta, gera todas as permutações de 1 a 9, forma cada uma em uma matriz 3x3 e a filtra, verificando se as somas de cada sub-matriz 2x2 são iguais. Conclui em meio segundo.

Uso

   f =: ([:;@,(<LF),.~[:(<@(LF,~":)"1@#~([:*/2=/\[:,2 2+/@,;._3])"2)(3 3)($"1)1+!A.&i.])@9:
   $ f ''  NB. A function has to take something to be invoked,
           NB. but in this case it is not used by the function
   37 {. f ''  NB. Take the first 37 characters
1 5 3
9 8 7
4 2 6

1 5 6
8 7 3
4 2 9

   _38 {. f ''  NB. Take the last 38 characters
9 5 4
2 3 7
6 8 1

9 5 7
1 2 3
6 8 4


   NB. The output string ends with two newlines
Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.