Python 3, pontuação = 4/3 = 1,33… (N = 4) pontuação = 1,4 (N = 7)
Atualização: implementou a pesquisa de força bruta no conjunto de solucionadores "estáticos" e obteve um novo resultado
Eu acho que pode ser melhorado ainda mais, procurando solucionadores dinâmicos, que podem usar os resultados de ponderação para outras decisões.
Aqui está um código Python que pesquisa todos os solucionadores estáticos em busca de valores pequenos n
(esses sempre pesam os mesmos conjuntos de moedas, portanto, o nome "estático") e determina o número de etapas do pior caso, simplesmente verificando se seus resultados de medição permitem apenas uma moeda correspondente definido em todos os casos. Além disso, ele registra a melhor pontuação encontrada até o momento e solucionadores de ameixas precoces, que mostraram que são definitivamente piores do que os encontrados anteriormente. Essa foi uma otimização importante, caso contrário, eu não poderia esperar por esse resultado com n
= 7. (Mas claramente ainda não está muito otimizado)
Sinta-se à vontade para fazer perguntas se não estiver claro como isso funciona…
#!/usr/bin/env python3
import itertools
from functools import partial
def get_all_possible_coinsets(n):
return tuple(itertools.product(*itertools.repeat((-1, 1), n)))
def weigh(coinset, indexes_to_weigh):
return sum(coinset[x] for x in indexes_to_weigh)
# made_measurements: [(indexes, weight)]
def filter_by_measurements(coinsets, made_measurements):
return filter(lambda cs: all(w == weigh(cs, indexes) for indexes, w in made_measurements), coinsets)
class Position(object):
def __init__(self, all_coinsets, coinset, made_measurements=()):
self.all_coinsets = all_coinsets
self.made_measurements = made_measurements
self.coins = coinset
def possible_coinsets(self):
return tuple(filter_by_measurements(self.all_coinsets, self.made_measurements))
def is_final(self):
possible_coinsets = self.possible_coinsets()
return (len(possible_coinsets) == 1) and possible_coinsets[0] == self.coins
def move(self, measurement_indexes):
measure_result = (measurement_indexes, weigh(self.coins, measurement_indexes))
return Position(self.all_coinsets, self.coins, self.made_measurements + (measure_result,))
def get_all_start_positions(coinsets):
for cs in coinsets:
yield Position(coinsets, cs)
def average(xs):
return sum(xs) / len(xs)
class StaticSolver(object):
def __init__(self, measurements):
self.measurements = measurements
def choose_move(self, position: Position):
index = len(position.made_measurements)
return self.measurements[index]
def __str__(self, *args, **kwargs):
return 'StaticSolver({})'.format(', '.join(map(lambda x: '{' + ','.join(map(str, x)) + '}', self.measurements)))
def __repr__(self):
return str(self)
class FailedSolver(Exception):
pass
def test_solvers(solvers, start_positions, max_steps):
for solver in solvers:
try:
test_results = tuple(map(partial(test_solver, solver=solver, max_steps=max_steps), start_positions))
yield (solver, max(test_results))
except FailedSolver:
continue
def all_measurement_starts(n):
for i in range(1, n + 1):
yield from itertools.combinations(range(n), i)
def next_measurement(n, measurement, include_zero):
shifted = filter(lambda x: x < n, map(lambda x: x + 1, measurement))
if include_zero:
return tuple(itertools.chain((0,), shifted))
else:
return tuple(shifted)
def make_measurement_sequence(n, start, zero_decisions):
yield start
m = start
for zero_decision in zero_decisions:
m = next_measurement(n, m, zero_decision)
yield m
def measurement_sequences_from_start(n, start, max_steps):
continuations = itertools.product(*itertools.repeat((True, False), max_steps - 1))
for c in continuations:
yield tuple(make_measurement_sequence(n, start, c))
def all_measurement_sequences(n, max_steps):
starts = all_measurement_starts(n)
for start in starts:
yield from measurement_sequences_from_start(n, start, max_steps)
def all_static_solvers(n, max_steps):
return map(StaticSolver, all_measurement_sequences(n, max_steps))
def main():
best_score = 1.0
for n in range(1, 11):
print('Searching with N = {}:'.format(n))
coinsets = get_all_possible_coinsets(n)
start_positions = tuple(get_all_start_positions(coinsets))
# we are not interested in solvers with worst case number of steps bigger than this
max_steps = int(n / best_score)
solvers = all_static_solvers(n, max_steps)
succeeded_solvers = test_solvers(solvers, start_positions, max_steps)
try:
best = min(succeeded_solvers, key=lambda x: x[1])
except ValueError: # no successful solvers
continue
score = n / best[1]
best_score = max(score, best_score)
print('{}, score = {}/{} = {}'.format(best, n, best[1], score))
print('That\'s all!')
def test_solver(start_position: Position, solver, max_steps):
p = start_position
steps = 0
try:
while not p.is_final():
steps += 1
if steps > max_steps:
raise FailedSolver
p = p.move(solver.choose_move(p))
return steps
except IndexError: # solution was not found after given steps — this solver failed to beat score 1
raise FailedSolver
if __name__ == '__main__':
main()
A saída:
Searching with N = 1:
(StaticSolver({0}), 1), score = 1/1 = 1.0
Searching with N = 2:
(StaticSolver({0}, {0,1}), 2), score = 2/2 = 1.0
Searching with N = 3:
(StaticSolver({0}, {0,1}, {0,1,2}), 3), score = 3/3 = 1.0
Searching with N = 4:
(StaticSolver({0,1}, {1,2}, {0,2,3}, {0,1,3}), 3), score = 4/3 = 1.3333333333333333
Searching with N = 5:
Searching with N = 6:
Searching with N = 7:
(StaticSolver({0,2}, {0,1,3}, {0,1,2,4}, {1,2,3,5}, {0,2,3,4,6}), 5), score = 7/5 = 1.4
Searching with N = 8:
Searching with N = 9:
(I gave up waiting at this moment)
Esta linha
(StaticSolver({0,2}, {0,1,3}, {0,1,2,4}, {1,2,3,5}, {0,2,3,4,6}), 5), score = 7/5 = 1.4
descobre o melhor solucionador encontrado. Os números entre {}
chaves são os índices de moedas para colocar no dispositivo de ponderação a cada passo.