Simule o universo!


103

Uma boa propriedade de uma linguagem completa de Turing é que ela pode ser usada para escrever qualquer programa, incluindo a simulação de todo o universo.

Seu trabalho é fazer exatamente isso: escreva um programa que simule o universo .


Nota: embora não duvide que você consiga realizar essa tarefa, hoje em dia não tenho tempo livre suficiente para verificar se todas as 10 90 partículas da sua simulação fazem o que realmente deveriam. Portanto, apenas para simplificar o teste e a avaliação, basta que o seu simulador de universo funcione apenas com uma única partícula inicial. Para manter as coisas interessantes, vamos assumir que esta partícula é o recém descoberto Higgs Boson.

Seu universo começa com nada além de um único Boson de Higgs de aproximadamente 120 GeV no meio dele. Para não tornar a saída muito longa, vamos fazer esse universo funcionar em apenas 10 a 25 segundos, em vez de sua "freqüência normal" de 5,4 × 10 a 44 segundos.

Esse bóson de Higgs decai mais cedo ou mais tarde, pois possui meia-vida de 1,6 × 10 a 22 segundos; portanto, a cada toque da simulação, há 0,0433% de chance de decaimento. Você pode conferir aqui o que ela irá deteriorar . Para ter um requisito central e simplificado, listo as taxas de ramificação que você deve usar:

Executando a simulação

A cada marca da simulação, o bóson de Higgs tem 0,0433% de chance de decair. Se isso acontecer, ele se decomporá nas seguintes partículas, com as probabilidades listadas (você deve usar esses nomes na saída):

  • quark inferior + antiquark inferior (64,8%)
  • 2 W bósons (14,1%)
  • 2 glúons (8,82%)
  • tau lepton + antitau lepton (7,04%)
  • charme quark + charme antiquark (3,27%)
  • 2 bósons Z (1,59%)
  • 2 fótons (0,223%)
  • 1 bóson Z + 1 fóton (0,111%)
  • múon + antimônio (0,0244%)
  • quark superior + antiquark superior (0,0216%)

Para um total de 100%.

Algumas dessas partículas decaem ainda mais.

W boson : meia-vida de 10 a 25 segundos, isso significa 50% de chance de decair a cada tick em um dos seguintes, com probabilidades iguais:

  • pósitron + neutrino
  • antimuão + neutrino
  • antitau lepton + neutrino

Z boson : meia-vida de 10 a 25 segundos, isso significa 50% de chance de se deteriorar a cada tick em um dos seguintes itens:

  • neutrino + antineutrino (20,6%)
  • elétron + pósitron (3,4%)
  • múon + antimônio (3,4%)
  • tau lepton + antitau lepton (3,4%)
  • down quark + down antiquark (15,2%)
  • quark estranho + antiquark estranho (15,2%)
  • quark inferior + antiquark inferior (15,2%)
  • up quark + up antiquark (11,8%)
  • charme quark + charme antiquark (11,8%)

quark superior : meia-vida de 5 × 10 -25 segundos, isso significa 12,95% de chance de se deteriorar a cada tick para o seguinte, com probabilidades iguais:

  • W boson + down quark
  • W boson + quark estranho
  • W boson + quark inferior

Claro, o bosão W também decairá em breve ...

O antiquark superior comporta-se de maneira semelhante ao quark superior: decai em um boson W e antiquark ad / s / b.

Todas as outras partículas (então todas, exceto os bósons Z e W e os quarks superiores) têm uma meia-vida muitas ordens de magnitude a mais, para não confundir a saída, elas são consideradas estáveis ​​para a nossa simulação .

Como o universo está em grande parte vazio, todas as partículas terão espaço suficiente para si mesmas e não interagirão umas com as outras. Portanto, todas as partículas individuais são independentes uma da outra em todos os aspectos, incluindo as probabilidades de se dividir.

Resultado:

A cada escala da simulação, você deve imprimir o conteúdo do universo simulado em uma nova linha. Por exemplo:

The universe contains 1 Higgs boson.
The universe contains 1 Higgs boson.
The universe contains 1 Higgs boson.
The universe contains 1 Higgs boson.
The universe contains 2 W bosons.
The universe contains 2 W bosons.
The universe contains 1 W boson, 1 positron and 1 neutrino.
The universe contains 1 positron, 1 antitau lepton and 2 neutrinos.
Simulation ended after 0.8 yoctoseconds.

A ordem das partículas na linha não é importante. A formatação, no entanto, deve ser exatamente como no exemplo acima , incluindo pontuação e pluralização. Se você simular um universo (mini-) inteiro, ele deve ficar bonito (e eu queria eliminar o abuso de um requisito de saída não suficientemente estrito)

Cada linha corresponde a 0,1 yoctosegundos, mas você será perdoado se demorar mais do que isso para o seu programa imprimir a saída.

A simulação termina quando apenas partículas "estáveis" permanecem.

Pontuação

Aplicam-se regras de código padrão de golfe.

O gerador de números aleatórios pode ser pseudo-aleatório, mas você deve propagá-lo se o idioma não o difundir por padrão. A distribuição de probabilidade do seu RNG deve ser uniforme.

  • Você receberá um bônus de -10% no tamanho do código se o programa usar um número inteiro como entrada e começar com tantos bósons de Higgs.

Exceção para os entusiastas da máquina de Turing.

Para aqueles que ousam tentar a sorte com uma máquina de Turing real ou com um idioma semelhante (como o Brainfuck), sua tarefa é facilitada pelas seguintes alterações nas regras (aplicáveis ​​apenas se o idioma for um derivado do Brainfuck ou um método de Turing muito simplificado máquina, incapaz de atribuir, sem ALU e os valores na fita só podem ser incrementados e decrementados por um) :

  • Os nomes das partículas são simplificados para d, s, b, t, u, c para os quarks, v para o neutrino, T para tau lepton, m para múon, g para gluon, p para fóton, Z, W e H para o bósons, - para o elétron e + para o pósitron. A cada marca, uma entrada com o valor 0 ou 1 é fornecida a partir da entrada padrão, indicando se a primeira partícula instável da lista se deteriora ou não.

O exemplo de saída se tornará, portanto,

H
H
H
H
W W
W W
W + n
+ !T n n

76
O Mathematica possui uma SimulateUniversefunção interna?
Digital Trauma

14
Então ... Este universo não tem um grande estrondo ... - apenas um pequeno estrondo?
Level River St

3
Se um quark superior decair, um antiquark superior também não deve decair? Eu acho que não importa, regras são regras. Mas a física é a física (e meu física de partículas não é muito bom, mas parece estranho.)
Nível River St

23
Todo o nosso universo pode ser um desafio para o código de golfe.
Coredump #

18
Suponho que seria melhor nesse desafio ...;)
Decay Beta

Respostas:


1

Pitão , 572 * 0,9 = 514,8 bytes

Jm?tld,hd,-1^.5c1shced\ sm*]<k2s>k2tced\ dcR\,cu:GhHtHc"A76 !B17 !C1 v!D_top !E00 !F bosR!GmuR_!Ineutrino_!Jtau leptR_!KQ_charm !LQ_strange !MQ_down !NQ_up !OQ_bottom !Panti!Qquark!Ron"\!"HiggsF,16Efg3240Ebb705Epp441Eqr352ER16350 cc7950 ss1115 cs555 tu122 de108_WF,CxCuCr1_ZF,Cw103 yxBtuBqrBjkAlmAfgAhi59 R59DQ,5 bj1 bl1 bf1DPOOPNNPMMPLLPKKPQ_gluR_JPJphotR_GPGIPIpositrR_electrR"\_L%"The universe contains %s.":j", "fT.e?bs[b\ h@Jk?tb\s"")0b",(?!.*,)"" and"K+Q*]Z24Ws<K4yK=+Z1Vs.em?>O1.0he@JkY,kOee@Jkb<K4IN XhNK_1 XRK1xLGeN;yK%"Simulation ended after %s yoctoseconds."cZT

Qualifica-se para o bônus de -10%. Experimente on-line aqui ou com a meia-vida do bóson de Higgs reduzida a 1ys aqui (contribui para menos repetições na produção e um universo mais emocionante!).

Estou convencido de que isso está longe de ser o ideal, especialmente a compactação do dicionário, mas já perdi tempo mais do que suficiente nisso, então sugestões de melhoria são bem-vindas.

O programa é dividido em três partes - preparação do dicionário, definição da função de saída e execução da simulação.

Preparação de dicionário

Jm?tld,hd,-1^.5c1shced\ sm*]<k2s>k2tced\ dcR\,cu:GhHtHc"A76 !B17 !C1 v!D_top !E00 !F bosR!GmuR_!Ineutrino_!Jtau leptR_!KQ_charm !LQ_strange !MQ_down !NQ_up !OQ_bottom !Panti!Qquark!Ron"\!"HiggsF,16Efg3240Ebb705Epp441Eqr352ER16350 cc7950 ss1115 cs555 tu122 de108_WF,CxCuCr1_ZF,Cw103 yxBtuBqrBjkAlmAfgAhi59 R59DQ,5 bj1 bl1 bf1DPOOPNNPMMPLLPKKPQ_gluR_JPJphotR_GPGIPIpositrR_electrR"\_

Esta é a maior seção do código final, ocupando 381 bytes. O dicionário é criado usando a seguinte string:

Higgs boson,1600 fg324000 bb70500 pp44100 qr35200 on16350 cc7950 ss1115 cs555 tu122 de108_W boson,1 vx1 vu1 vr1_Z boson,1 vw103 yx17 tu17 qr17 jk76 lm76 fg76 hi59 on59_top quark,5 bj1 bl1 bf1_top antiquark_bottom quark_bottom antiquark_up quark_up antiquark_down quark_down antiquark_strange quark_strange antiquark_charm quark_charm antiquark_gluon_tau lepton_antitau lepton_photon_muon_antimuon_neutrino_antineutrino_positron_electron

A string é uma lista separada por sublinhado das partículas e, se a partícula é instável, seu comportamento - uma lista separada por espaços, que consiste em sua meia-vida em tiques de simulação seguidos pelo que ela decai, juntamente com as probabilidades distintas de cada uma. Cada partícula possui um código de uma letra associado a ela, dado por sua posição na lista indexada no alfabeto minúsculo - de modo que o bóson de Higgs é a, o bóson W é btodo o caminho até o elétron y.

Em vez de armazenar as probabilidades de decaimento, a meia-vida é armazenada e a probabilidade calculada quando o dicionário é processado. A fórmula utilizada é P=1-(1/2)^(1/h)onde Pestá a probabilidade de decomposição por carrapato e hé a meia vida da partícula medida em carrapatos.

As partículas instáveis ​​são as quatro primeiras da lista. Como o número dessas partículas é o que determina quando a simulação termina, tê-las no início da lista facilita a verificação mais tarde.

O problema é que essa string é enorme - 436 bytes! - e o uso da compactação de strings incorporada do Pyth na verdade aumenta a contagem de bytes, pois usa tantos caracteres de vários bytes. Eu decidi por um esquema de compactação de dicionário iterativo relativamente simples. O trecho u:GhHtHc"xxx"\!"yyy"descompacta, da seguinte maneira:

u:GhHtHc"xxx"\!"yyy"   xxx -> dictionary, yyy -> encoded string
       c"xxx"\!        Chop the dictionary on !
u              "yyy"   Reduce the above, with initial state as encoded string, using:
 :G                      In the current string, replace...
   hH                    ... the first character of the dictionary entry...
     tH                  ... with the remainder of the dictionary entry

As entradas do dicionário que escolhi são baseadas apenas na minha intuição e em algumas tentativas e erros, por isso tenho certeza de que há muito espaço para melhorias.

A sequência de dicionário descompactada é então interpretada e armazenada como descrito abaixo:

Jm?tld,hd,-1^.5c1shced\ sm*]<k2s>k2tced\ dcR\,cxxx\_   xxx -> decompressed dictionary
                                              cxxx\_   Split the string on underscores
                                          cR\,         Split each part on commas
 m                                                     Map each element (particle), d, using:
  ?tld                                   d               Is the element length >1? If not, no change, otherwise...
      ,hd                                                  Create a pair consisting of the particle's name and...
                   ced\                                      Split the decay data on spaces
                 sh                                          Parse 1st element (half life) as int
          -1^.5c1                                            Calculate per-tick decay probability
         ,                                                   Pair the above with...
                         m         tced\                       Map the rest of the decay data, k, using:
                           ]<k2                                  Take the 1st two characters
                               s>k2                              Parse the rest of the characters as a string
                          *                                      Repeat the characters that many times
                        s                                      Flatten the list
J                                                      Store the processed dictionary in J

O resultado é que Jcontém uma lista ordenada dos nomes das partículas. Se eles decaem, o nome é emparelhado com sua probabilidade de decaimento e um conjunto de partículas nas quais ele poderia decair, ponderado por suas probabilidades relativas.

Definição da função de saída

L%"The universe contains %s.":j", "fT.e?bs[b\ h@Jk?tb\s"")0b",(?!.*,)"" and"

Isso define uma função y(b)que aceita o estado atual do universo como sua entrada. Esta é simplesmente uma lista dos números das partículas, ordenadas por seu tipo, conforme definido na string de dicionário descrita na seção anterior.

L%"x":j", "fT.e?bs[b\ h@Jk?tb\s"")0b",(?!.*,)"" and"   "x" -> format string, omitted for brevity
L                                                      Define a function, y(b)
             .e                     b                  Map each element of b with its index, k, using:
               ?b                 0                     Is b non zero? If not, 0, otherwise...
                   b                                      Particle count
                    \                                     Space
                      h@Jk                                Particle name (lookup in dictionary, then take 1st element)
                          ?tb\s""                        Trailing s if more than 1
                 s[              )                       Concatenate the above 4
           fT                                          Filter out the 0s
      j", "                                            Join on comma + space
     :                                                 Replace in the above...
                                    ",(?!.*,)"         ... the last comma...
                                              " and"   ... with "and"
 %"x"                                                  Insert the above into the format string

Execução de simulação

K+Q*]Z24Ws<K4yK=+Z1Vs.em?>O1.0he@JkY,kOee@Jkb<K4IN XhNK_1 XRK1xLGeN;yK%"Simulation ended after %s yoctoseconds."cZT

Com a preparação feita, a simulação agora pode ser executada. Isso consiste em algumas etapas:

Inicialização do universo

Como a partícula no índice 0 no estado do universo é o bóson de Higgs, o estado inicial do universo é uma matriz de número de entrada seguida por 24 zeros.

K+Q*]Z24   implicit: Q=eval(input())
  Q        Input number
   *]Z24   0 repeated 24 times
 +         Concatenate
K          Assign to K

Loop de simulação

A cada escala na simulação, o estado atual do universo precisa ser exibido, um contador incrementado e cada partícula volátil precisa verificar se deve decair, aplicando os resultados ao estado do universo depois que cada partícula for avaliada.

Ws<H4yK=+Z1Vs.em?>O1.0he@JkY,kOee@Jkb<K4IN XhNK_1 XRK1xLGeN;   
 s<K4                                                          Take the sum of the first 4 particle counts
W                                                          ;   Loop until the above is 0
     yK                                                        Output the current universe state
       =+Z1                                                    Increment variable Z (initially 0)
             .e                      <K4                       Map each particle count, b, with its index, k, using:
               m                    b                            Map over the particle count using:
                        @JK                                        Look up the particle data
                      he                                           Get the decay probability
                  O1.0                                             Generate random float between 0 and 1
                ?>         Y                                       Has particle failed to decay? Empty array if so, otherwise...
                               ee@Jk                                 Get the particle decay choices
                              O                                      Choose one of them at random
                            ,k                                       Create a pair with the current particle index and the above
            s                                                  Combine into single nested list
           V                                                   For N in the above:
                                        IN                       If N is not empty:
                                           X  K                    Add to element in K...
                                            hN                     ... at the correct particle's index...
                                               _1                  ... -1
                                                      xLGeN        Get the index of each particle to be added to the universe
                                                                     (lookup using index in G, lowercase alphabet)
                                                  XRK1             Add 1 to the element in K at each of the indexes

Saída final

A simulação termina quando não há partículas instáveis. Tudo o que resta é produzir o estado final do universo e quanto tempo (quantos ticks) a simulação levou.

yK%"Simulation ended after %s yoctoseconds."cZT   
yK                                                Output final universe state
                                            cZT   Float divide ticks count by 10
  %"Simulation ended after %s yoctoseconds."      Format string, implicit print

23

C ++ ( 2420 , 2243 , 2353 , 1860 , 1822 * 0,9 = 1639,8)

Ok, então esta é provavelmente a pior submissão de golfe de todos os tempos, mas é a minha primeira e me diverti. Eu acho que até funciona. :)

#include <iostream>
#include <list>
#include <string>
#include <time.h>
#define D r=rand();d=((double)r/RAND_MAX)
using namespace std;class P{int n[25];public:int S;P(int N){for(S=0;S<24;S++)n[S]=0;n[24]=N;S=1;}void C(){string s[25]={"down quark","down antiquark","up quark","up antiquark","bottom quark","bottom antiquark","tau lepton","antitau lepton","charm quark","charm antiquark","strange quark","strange antiquark","neutrino","antineutrino","muon","antimuon","gluon","photon","electron","positron","top quark","top antiquark","Z boson","W boson","Higgs boson"};int r,i,j,w,f,F,x,y;double d;S=0;F=0;for(i=0;i<25;i++){w=0;for(j=0;j<n[i];j++){D;x=-1;y=-1;if(i==24){if(d<.000433){D;if(d<.648){x=4;y=5;}else if(d<.789){x=23;y=23;}else if(d<.8772){x=16;y=16;}else if(d<.9476){x=6;y=7;}else if(d<.9803){x=8;y=9;}else if(d<.9962){x=22;y=22;}else if(d<.99843){x=17;y=17;}else if(d<.99954){x=22;y=17;}else if(d<.999784){x=14;y=16;}else{x=21;y=20;}}}else if(i==23){if(d<.5){D;if(d<.33){x=19;y=12;}else if(d<.67){x=16;y=12;}else{x=17;y=12;}}}else if(i==22){if(d<.5){D;if(d<.206){x=12;y=13;}else if(d<.24){x=18;y=19;}else if(d<.274){x=14;y=16;}else if(d<.308){x=16;y=17;}else if(d<.46){x=0;y=1;}else if(d<.612){x=10;y=11;}else if(d<.764){x=4;y=5;}else if(d<.882){x=2;y=3;}else{x=8;y=9;}}}else if(i==21||i==20){if(d<.1295){D;x=23;if(d<.33){y=0;}else if(d<.67){y=10;}else{y=4;}if(i==21)y-=32;}}if(x>=0){++n[x];++n[y];w++;}if(x>19||y>19)S=1;}n[i]-=w;if(n[i]>0){F=i;if(i>19)S=1;}}cout<<"The universe contains";f=0;for(i=0;i<25;i++){if(n[i]>0){cout<<(f>0?(i<F?", ":" and "):" ")<<n[i]<<' '<<s[i]<<(n[i]>1?"s":"");f=1;}}cout<<'.'<<endl;}};int main(int c,char* v[]){int w=1,y=0;if(c>1){w=atoi(v[1]);}srand(time(0));rand();P p=P(w);int Time=time(0);while(p.S){p.C();y++;}cout<<"Simulation ended after "<<(double)y/10<<" yoctoseconds.";}

Versão Rápida

Este não é tão curto (9 bytes extras), mas corre muito mais rápido para testar grandes números. Como não é curto o suficiente para competir, também adicionei um pequeno código para registrar o tempo de execução no mundo real e imprimi-lo logo após o tempo simulado. Minha versão original fez n = 100k em cerca de 8 minutos. A versão acima faz isso em cerca de 2 minutos. Esta versão rápida pode fazer isso em 9 segundos. n = 1 milhão levou 53 segundos.

#include <iostream>
#include <list>
#include <string>
#include <time.h>
#define D r=rand();d=((double)r/RAND_MAX)
using namespace std;class P{int n[25];public:int S;P(int N){for(S=0;S<24;S++)n[S]=0;n[24]=N;S=1;}void C(){string s[25]={"down quark","down antiquark","up quark","up antiquark","bottom quark","bottom antiquark","tau lepton","antitau lepton","charm quark","charm antiquark","strange quark","strange antiquark","neutrino","antineutrino","muon","antimuon","gluon","photon","electron","positron","top quark","top antiquark","Z boson","W boson","Higgs boson"};int r,i,j,w,f,F,x,y;double d;S=0;F=0;for(i=20;i<25;i++){w=0;for(j=0;j<n[i];j++){D;x=-1;y=-1;if(i==24){if(d<.000433){D;if(d<.648){x=4;y=5;}else if(d<.789){x=23;y=23;}else if(d<.8772){x=16;y=16;}else if(d<.9476){x=6;y=7;}else if(d<.9803){x=8;y=9;}else if(d<.9962){x=22;y=22;}else if(d<.99843){x=17;y=17;}else if(d<.99954){x=22;y=17;}else if(d<.999784){x=14;y=16;}else{x=21;y=20;}}}else if(i==23){if(d<.5){D;if(d<.33){x=19;y=12;}else if(d<.67){x=16;y=12;}else{x=17;y=12;}}}else if(i==22){if(d<.5){D;if(d<.206){x=12;y=13;}else if(d<.24){x=18;y=19;}else if(d<.274){x=14;y=16;}else if(d<.308){x=16;y=17;}else if(d<.46){x=0;y=1;}else if(d<.612){x=10;y=11;}else if(d<.764){x=4;y=5;}else if(d<.882){x=2;y=3;}else{x=8;y=9;}}}else if(i==21||i==20){if(d<.1295){D;x=23;if(d<.33){y=0;}else if(d<.67){y=10;}else{y=4;}if(i==21)y-=32;}}if(x>=0){++n[x];++n[y];w++;}if(x>19||y>19)S=1;}n[i]-=w;if(n[i]>0&&i>19)S=1;}for(i=0;i<25;i++){if(n[i]>0)F=i;}cout<<"The universe contains";f=0;for(i=0;i<25;i++){if(n[i]>0){cout<<(f>0?(i<F?", ":" and "):" ")<<n[i]<<' '<<s[i]<<(n[i]>1?"s":"");f=1;}}cout<<'.'<<endl;}};int main(int c,char* v[]){int w=1,y=0;if(c>1){w=atoi(v[1]);}srand(time(0));rand();P p=P(w);int Time=time(0);while(p.S){p.C();y++;}cout<<"Simulation ended after "<<(double)y/10<<" yoctoseconds.";cout<<endl<<"Time Taken: "<<(time(0)-Time)<<" seconds."<<endl;}

Saída de amostra (sem argumentos)

The universe contains 1 Higgs boson.
... (many lines later)
The universe contains 1 Higgs boson.
The universe contains 1 bottom quark and 1 bottom antiquark.
Simulation ended after 339.4 yoctoseconds.

Saída de exemplo (universe.exe 10):

The universe contains 10 Higgs bosons.
The universe contains 1 bottom quark, 1 bottom antiquark and 9 Higgs bosons.
The universe contains 2 bottom quarks, 2 bottom antiquarks and 8 Higgs bosons.
The universe contains 3 bottom quarks, 3 bottom antiquarks and 7 Higgs bosons.
The universe contains 4 bottom quarks, 4 bottom antiquarks and 6 Higgs bosons.
The universe contains 4 bottom quarks, 4 bottom antiquarks, 1 charm quark, 1 charm antiquark and 5 Higgs bosons.
The universe contains 5 bottom quarks, 5 bottom antiquarks, 1 charm quark, 1 charm antiquark and 4 Higgs bosons.
The universe contains 5 bottom quarks, 5 bottom antiquarks, 1 charm quark, 1 charm antiquark, 2 Z bosons and 3 Higgs bosons.
The universe contains 5 bottom quarks, 5 bottom antiquarks, 1 charm quark, 1 charm antiquark, 1 neutrino, 1 antineutrino, 1 Z boson and 3 Higgs bosons.
The universe contains 5 bottom quarks, 5 bottom antiquarks, 1 charm quark, 1 charm antiquark, 2 neutrinos, 2 antineutrinos and 3 Higgs bosons.
The universe contains 6 bottom quarks, 6 bottom antiquarks, 1 charm quark, 1 charm antiquark, 2 neutrinos, 2 antineutrinos and 2 Higgs bosons.
The universe contains 7 bottom quarks, 7 bottom antiquarks, 1 charm quark, 1 charm antiquark, 2 neutrinos, 2 antineutrinos and 1 Higgs boson.
The universe contains 7 bottom quarks, 7 bottom antiquarks, 1 charm quark, 1 charm antiquark, 2 neutrinos, 2 antineutrinos and 2 W bosons.
The universe contains 7 bottom quarks, 7 bottom antiquarks, 1 charm quark, 1 charm antiquark, 2 neutrinos, 2 antineutrinos and 2 W bosons.
The universe contains 7 bottom quarks, 7 bottom antiquarks, 1 charm quark, 1 charm antiquark, 3 neutrinos, 2 antineutrinos, 1 photon and 1 W boson.
The universe contains 7 bottom quarks, 7 bottom antiquarks, 1 charm quark, 1 charm antiquark, 4 neutrinos, 2 antineutrinos, 1 gluon and 1 photon.
Simulation ended after 1160.5 yoctoseconds.

Saída de exemplo (universe.exe 1000000)

(não exatamente 10 ^ 90, mas estamos chegando lá)

(about a minute, 14 MB and 33000 lines of output later)
The universe contains 5006 down quarks, 4945 down antiquarks, 3858 up quarks, 3858 up antiquarks, 653289 bottom quarks, 653190 bottom antiquarks, 70388 tau leptons, 70388 antitau leptons, 36449 charm quarks, 36449 charm antiquarks, 4956 strange quarks, 4873 strange antiquarks, 289364 neutrinos, 6764 antineutrinos, 1401 muons, 275514 gluons, 99433 photons, 1065 electrons and 94219 positrons.
Simulation ended after 3299.9 yoctoseconds.

Saídas maiores

Se você estiver usando a saída do console a partir de uma linha de comando, sugiro algo como universe.exe 100 > temp.txtisso, para que seja muito mais rápido. Com Notepad ++, você pode então temp.txt aberta, bateu ctrl+H, entrar ^(.*?)$\s+?^(?=.*^\1$)no Encontre o campo, insira nada no Substituir campo, vire Modo de Busca para Regular Expression, vire Na selecção e . corresponde à nova linha OFF e pressione Replace All. Agora você apenas vê onde as alterações ocorreram, em vez de 8000 linhas de saída (parece que há bugs fazendo mais de 2000-3000 linhas por vez).

Correções / Ajustes

v4 - complete overhaul, removed list, one character array, moved almost everything into the class functions. Fixed output error, was using "," instead of "and" for last item. Sped up execution a *lot* as an added bonus. :)
v3 - more fixes
v2 - more shorter
v1 - fixed numerous little issues, bug fixes
v0 - baseline

1
Parece que no seu primeiro exemplo você confundiu o tau lepton com o quark up. O tau lepton tem uma meia-vida da ordem de 10 ^ -13 segundos; portanto, é considerado estável nesta simulação; caso contrário, teríamos muitos bilhões de linhas até que se deteriorasse. As únicas coisas que decaem em nossa simulação são os bósons e o quark / antiquark superior.
Vsz

2
Você pode encurtar char t[N]={'d','D','u','U','b','B','l','L','c','C','s','S','n','N','m','M','g','G','p','e','E','T','t','Z','W','H'para char t[]="dDuUbBlLcCsSnNmMgGpeETtZWH"? Devem trabalhar em c , não tenho certeza sobre c ++
Digital Trauma

12

Python 3, 1.247 * 0,9 = 1.122,3

Bem, esta é a minha entrada mais longa, mas pelo menos sou mais baixa que C ++.

Agora com bônus adicional! Ele deve ser chamado com um número como o primeiro argumento.

Meu universo não trabalhava com partículas em decomposição que não fossem Higgs Boson, mas agora funciona. Além disso, eu não tinha a pluralização ou pontuação correta, mas na verdade tenho agora.

Estou chegando tão perto do sub 1k!

import random,sys,numpy as h
H,M,G,N,P,K,L,n,s='photon,muon,gluon,neutrino,positron, quark,tau lepton, boson,The universe '.split(',')
c=random.choice
Z=' anti'+K[1:]
B='bottom'+K
A=B[:6]+Z
U='anti '+M
T=U[:4]+L
Q='charm'+K
C=Q[:5]+Z
S='strange'+K
R=S[:7]+Z
D='down'+K
O=D[:4]+Z
def w(c):v,t=zip(*c);t=h.array(t);return v[h.random.choice(len(v),p=t/t.sum())]
y=M,U
f=lambda p:{z:w([(c([('up'+K,'up'+Z),(Q,C)]),11.8),((N,U[:5]+N),20.6),(c([('electron',P),y,(L,T)]),3.4),(c([(S,R),(B,B),(D,O)]),15.2)]),E:(I,c([D,S,B])),F:(I,c([O,R,A])),I:c([(P,N),(U,N),(T,N)]),J:w([((B,A),64.8),((I,I),14.1),((G,G),8.82),((L,T),7.04),((Q,C),3.27),((z,z),1.59),((H,H),0.223),((z,H),0.111),(y,0.0244),((E,F),0.0246)])}[p]
z='Z'+n,50
E='top'+K,12.95
F='top'+Z,E[1]
I='W'+n,50
J='Higgs'+n,.0433
u=[J]*int(sys.argv[1])
b={z,E,F,I,J}
k=isinstance
d=lambda p:p if k(p,str)else w([(p,100-p[1]),(f(p),p[1])])
a=0
g=lambda x:[x[0],x][k(x,str)]
while b&set(u):
 n=[]
 for p in u:q=d(p);n+=([q],(q,[q])[q in b])[p in b]
 e=list(map(g,n));e=[(x,x+'s')[e.count(x)>1]for x in e];print(s+'contains %s'%', '.join(('%s %s'%(e.count(x),g(x))for x in set(e[:-1])))+('.',' and %s %s.'%(e.count(e[-1]),e[-1]))[len(set(e))>1]);a+=.1;u=n
print(s+'ended after %s yoctoseconds.'%round(a,1))

11
Eu acho engraçado que um programa que simule o universo comece import random. Tanta coisa para o determinismo.
agtoever

Isso é python3, certo? Eu acho que você pode usar seqüências de caracteres F na impressão final, que pode economizar 1 ou 2 bytes :-).
Chromium

1
@ Chromium Sim, eu provavelmente poderia. Eles não existiam quando escrevi esta resposta, mas eu definitivamente poderia voltar e adicioná-los.
Morgan Thrapp

11

Perl 6 , (707 bytes -10%) Pontuação 636.3

Com algumas quebras de linha desnecessárias para um pouco mais de legibilidade:

{
 my%p;
 %p=<H H2309.469bB64.8WW14.1gg8.82lL7.04cC3.27ZZ1.59pp0.223Zp0.111mM0.0244tT0.0216 W W3pn1Mn1Ln1 Z Z100nN20.6ep3.4mM3.4lL3.4dD15.2sS15.2bB15.2uU11.8cC11.8 t t7.722Wd1Ws1Wb1 T T7.722WD1WS1WB1>;
 my&f=*.comb[0];

 my%h;
 %h{.&f}="$_ boson" for <Higgs W Z>;
 {
  %h{.&f}="$_ quark";
  %h{.&f.uc}="$_ antiquark"
 } for <bottom top charm up down strange>;
 %h{.&f}=$_~"on" for <glu phot electr positr>;
 %h{.&f.uc}="anti"~(%h{.&f}=$_) for <muon neutrino>;
 %h<L>="anti"~(%h<l>="tau lepton");

 my$t;
 ("H"x$^a),{
   $t+=.1;
   S:g/./{%((%p{$/}||$/~1).comb(/(\D+|<:!L>+)/)).Mix.roll}/
 }...{
   say "The universe contains {
      .comb.Bag.map({
         "{.value,%h{.key}~'s'x(.value>1)}"
      }).join(', ')
   }.";
   !/<[HWZtT]>/
 };
 say "Simulation ended after $t yoctoseconds."
}

Experimente online!

The universe contains 4 Higgs bosons.
The universe contains 4 Higgs bosons.
The universe contains 4 Higgs bosons.
The universe contains 4 Higgs bosons.
The universe contains 3 Higgs bosons, 2 gluons.
The universe contains 3 Higgs bosons, 2 gluons.
The universe contains 3 Higgs bosons, 2 gluons.
The universe contains 3 Higgs bosons, 2 gluons.
The universe contains 3 Higgs bosons, 2 gluons.
The universe contains 3 Higgs bosons, 2 gluons.
The universe contains 3 Higgs bosons, 2 gluons.
The universe contains 3 Higgs bosons, 2 gluons.
The universe contains 1 tau lepton, 2 Higgs bosons, 2 gluons, 1 antitau lepton.
The universe contains 1 tau lepton, 2 Higgs bosons, 2 gluons, 1 antitau lepton.
The universe contains 1 tau lepton, 2 Higgs bosons, 2 gluons, 1 antitau lepton.
The universe contains 1 tau lepton, 2 Higgs bosons, 2 gluons, 1 antitau lepton.
The universe contains 1 tau lepton, 1 Higgs boson, 4 gluons, 1 antitau lepton.
The universe contains 1 tau lepton, 6 gluons, 1 antitau lepton.
Simulation ended after 1.7 yoctoseconds.

Alguma explicação: Deus e o Homem

Existem 2 estruturas de dados contendo a física %pe a nomeação %h; Deus e homem, por assim dizer. O hash da física fornece um conjunto de strings indexados pela letra de partícula instável original, que pode ser dividida, dividida em hash e convertida em um Mix:

say %((%p<H>).comb(/(\D+|<:!L>+)/)).Mix;
> Mix(H(2309.469), WW(14.1), ZZ(1.59), Zp(0.111), bB(64.8), cC(3.27), gg(8.82), lL(7.04), mM(0.0244), pp(0.223), tT(0.0216))

Cada partícula recebe uma letra e, portanto, cada uma dessas misturas especifica uma coleção de decaimentos de partículas. H decai para WW, com probabilidade ponderada 14.1. Os pares partícula-antipartícula são codificados com letras maiúsculas e minúsculas, como ce Cpara o quark de charme e o antiquark de charme.

E o homem pensou um pouco, e chamou de antitau lepton

A nomeação é toda configurada %h, o que apenas mapeia cada letra para um nome de partícula. É um golfe até certo ponto, mas suspeito que há espaço para melhorias, dada a quantidade de repetições.

p => positron
g => gluon
Z => Z boson
B => bottom antiquark
e => electron
s => strange quark
d => down quark
W => W boson
m => muon
U => up antiquark
c => charm quark
H => Higgs boson
L => antitau lepton
N => antineutrino
n => neutrino
S => strange antiquark
D => down antiquark
T => top antiquark
u => up quark
t => top quark
b => bottom quark
M => antimuon
C => charm antiquark
l => tau lepton

String original

Com essas duas estruturas, o universo é simulado, é claro, pela manipulação de cordas. O mesmo "H"acontece com um universo com um único bóson de Higgs. A estrutura do gerador _,_..._é usada para criar um loop e separa a evolução do estado da cadeia do universo (retida $_) da impressão. A impressão é feita ensacando as letras no universo e mapeando as contagens resultantes (com plurais!).

Espirros de partículas em existência

O desenvolvimento de partículas envolve o mapeamento para um valor escolhido no Mix para essa partícula; então t, o quark superior, evolui como

t=>7.722
Wd=>1
Ws=>1
Wb=>1

O Perl6 nos permite escolher aleatoriamente uma daquelas chaves com aquelas ponderações dadas através do simples andarilho .roll. Então, rolamos te obtemos, dizemos Wbe substituímos em nosso universo "HtT" -> "HWbT". Cada partícula instável tem a si mesma como um possível rolo, o que nos permite simplificar a estrutura versus ter que verificar se ela se deteriorou ou não; na maioria das vezes você rola para "H", você apenas obtém "H" novamente.

Teoria experimental das cordas

Você pode assistir a seqüência do universo evoluir através desta versão modificada .

 HHH
 HHH
 HHbB
 HHbB
 HHbB
 HHbB
 HHbB
 HHbB
 lLHbB
 lLHbB
 lLHbB
 lLHbB
 lLHbB
 lLbBbB

atuação

Eu levei até 100 H no TIO, inevitavelmente, se você quisesse ir muito além, seria melhor fazer algumas alterações, afinal é a Grand Unified String Theory.


O que fez o homem dar esse nome, Phil?
Manoj Kumar

1
@ManojKumar: De acordo com a wikipedia: "O símbolo τ foi derivado do grego τρίτον (triton, que significa" terceiro "em inglês), já que foi o terceiro lepton carregado descoberto". ( en.wikipedia.org/wiki/Tau_(particle) )
Phil H

7

Groovy, 1506 1454 - 10% = 1309 bytes

Assume que o número de partículas do bóson de Higgs inicial é dado como o primeiro argumento na linha de comando:

A='anti'
B='bottom '
C='charmed '
D='downward'
E='tau '
F='top '
L='lepton'
M='muon'
N='nutrino'
O=' boson'
P='upward '
Q='quark'
T='strange '
a=[n:'gluon']
b=[n:B+Q]
c=[n:B+A+Q]
d=[n:D+Q]
e=[n:D+A+Q]
f=[n:P+Q]
g=[n:P+A+Q]
h=[n:T+Q]
i=[n:T+A+Q]
j=[n:C+Q]
k=[n:C+A+Q]
l=[n:'positron']
m=[n:'electron']
n=[n:N]
o=[n:A+N]
p=[n:'photon']
q=[n:M]
r=[n:A+M]
s=[n:E+L]
t=[n:A+E+L]
u=[n:'W'+O,c:50,s:[[c:33,p:[l,n]],[c:33,p:[l,n]],[c:33,p:[l,n]]]]
v=[n:F+Q,c:12.95,s:[[c:33,p:[u,d]],[c:33,p:[u,h]],[c:33,p:[u,b]]]]
w=[n:F+A+Q]
x=[n:'Z'+O,c:50,s:[[c:20.6,p:[n,o]],[c:3.4,p:[m,l]],[c:3.4,p:[q,r]],[c:3.4,p:[s,t]],[c:15.2,p:[d,e]],[c:15.2,p:[h,i]],[c:15.2,p:[b,c]],[c:11.8,p:[f,g]],[c:11.8,p:[j,k]]]]
y=[n:'Higgs'+O,c:0.0433,s:[[c:64.8,p:[b,c]],[c:14.1,p:[u,u]],[c:8.82,p:[a,a]],[c:7.04,p:[s,t]],[c:3.27,p:[j,k]],[c:1.59,p:[x,x]],[c:0.223,p:[p,p]],[c:0.111,p:[x,l]],[c:0.0244,p:[q,r]],[c:0.0216,p:[v,w]]]]
O={new Random().nextInt(1000001)/10000}
S={s,c->for(Map p:s){c-=p.c;if(c<=0){return p.p}};S(s,O())}
P={r=[];it.collect{it.n}.groupBy{it}.each{k,v->c=v.count{it};r<<"${c} ${c>1?k+'s':k}"};r.join(', ').reverse().replaceFirst(',', 'dna ').reverse()}
U=[]
args[0].times{U<=O()){I.remove();S(J.s,O()).each{I.add(it)}}}
if(!Z){println "Simulation ended after $Y yoctoseconds.";break}}


10% de 1454 é 145,4 #
geokavel 23/11

Com matemática como essa, é uma maravilha a simulação funcionar :-) Obrigado por apontar isso!
K. Klassen

7

PHP, 989 - 10% = 890,1 bytes

Sub 1K bebê! Obrigado vsz, este foi um desafio muito divertido. Tantas maneiras de fazer isso e muito difícil verificar se sua saída está correta.

O programa pode usar um argumento de linha de comando para especificar o número inicial de bósons de Higgs, por exemplo php universe_simulator.php 5

<?eval(gzinflate(base64_decode('bVNdb9Q6EH3nV4TVSEm0ozRpt/uBcRGlQLlw4QIFWqxQuYm7mza1s4mzdEH73+84WUqFyINzjn1mfMaaAcmltgWDC35hrDU3DDKeLWRN4JC2GqMZLPmylfU1g4Y3tpZ6rhhY7lvZeqWqrNE+A821am1daMMuTa1ktgjUbVWaXAU++jiAn3Jz0xqNIKFbLMKFR/9l96c127LMsdx81z3v0RJVqTJbU4J56dIcF/N548Eh9kk1VgtDTrAyTdHJoNnma7rsFq2p+p0OLLHd0rZjX1yur7QMQtnAKoRKZIs6GA6hGI5HYcphxSDn4g0/EFEcx6O9PRQiGo+mKI7weZqiiCbTGYpTPO3IdDLZRfEaX3dsNpqMUTzDjz2bxhT9Al/2bDYm5Rmebdl0RIfv8N2WzvZHjv46nU2mxJ/iv44nKE7wU0ofnjpj++Qp2aHwt/ifO991+Cm+3WqfOUT47Jc22o3J1mEviPb2qZhjfNWRfdK/xw8dHjuDv6tE8Rm/9EXOpvfq2CPVP/3F0Ww8vu+yq5zwJ3dzsju7M/qqf67O6Icek/y5Q4RP/pQf35O/v5Mf9fKUQctlXcv1+WVRlkFMfVbPVyJJnzxK8E3IYM1j9n1RlCp4CLfhT7jlCYMrLtK7pu3DM9Nqe76SZauaAFrXEtf8wLXFlUj5AFYe9Qdcp4MogNVB8sRv/Ee+HzKVLYxX1Wp+XquqlBk1/w4G4humwxB2aBA8qXNIaB5OFsprdbFSdaO8zGgrC914g+jKFJomxvMRrsJoED0YhHfeoPXISEFGbFhcBpALsGlXRcyI02TmQbgzV25G8xt5G4SPeS8SsdP94H+R/M7eK5OU7si6/D8oPOtC+1ep2saZwCiKaD9JQ3ZBodds0+pGWToRUNDmZgPrIY8StnHPMfhY3LSltIXRntK5yj15aVXtwdpbm8yaRlH1eUOFsv8B')));

Aqui está a mesma coisa com quebras de linha para ... "legibilidade" ...

<?eval(gzinflate(base64_decode('bVNdb9Q6EH3nV4TVSEm0ozRpt/uBcRGlQLlw4QIFWqxQuYm7
mza1s4mzdEH73+84WUqFyINzjn1mfMaaAcmltgWDC35hrDU3DDKeLWRN4JC2GqMZLPmylfU1g4Y3tpZ6
rhhY7lvZeqWqrNE+A821am1daMMuTa1ktgjUbVWaXAU++jiAn3Jz0xqNIKFbLMKFR/9l96c127LMsdx8
1z3v0RJVqTJbU4J56dIcF/N548Eh9kk1VgtDTrAyTdHJoNnma7rsFq2p+p0OLLHd0rZjX1yur7QMQtnA
KoRKZIs6GA6hGI5HYcphxSDn4g0/EFEcx6O9PRQiGo+mKI7weZqiiCbTGYpTPO3IdDLZRfEaX3dsNpqM
UTzDjz2bxhT9Al/2bDYm5Rmebdl0RIfv8N2WzvZHjv46nU2mxJ/iv44nKE7wU0ofnjpj++Qp2aHwt/if
O991+Cm+3WqfOUT47Jc22o3J1mEviPb2qZhjfNWRfdK/xw8dHjuDv6tE8Rm/9EXOpvfq2CPVP/3F0Ww8
vu+yq5zwJ3dzsju7M/qqf67O6Icek/y5Q4RP/pQf35O/v5Mf9fKUQctlXcv1+WVRlkFMfVbPVyJJnzxK
8E3IYM1j9n1RlCp4CLfhT7jlCYMrLtK7pu3DM9Nqe76SZauaAFrXEtf8wLXFlUj5AFYe9Qdcp4MogNVB
8sRv/Ee+HzKVLYxX1Wp+XquqlBk1/w4G4humwxB2aBA8qXNIaB5OFsprdbFSdaO8zGgrC914g+jKFJom
xvMRrsJoED0YhHfeoPXISEFGbFhcBpALsGlXRcyI02TmQbgzV25G8xt5G4SPeS8SsdP94H+R/M7eK5OU
7si6/D8oPOtC+1ep2saZwCiKaD9JQ3ZBodds0+pGWToRUNDmZgPrIY8StnHPMfhY3LSltIXRntK5yj15
aVXtwdpbm8yaRlH1eUOFsv8B')));

Alguma saída:

The universe contains 2 Higgs bosons.
[...]
The universe contains 1 Higgs boson, 2 neutrinos, 1 positron and 1 antimuon.
The universe contains 1 Higgs boson, 2 neutrinos, 1 positron and 1 antimuon.
The universe contains 1 Higgs boson, 2 neutrinos, 1 positron and 1 antimuon.
The universe contains 1 Higgs boson, 2 neutrinos, 1 positron and 1 antimuon.
The universe contains 1 Higgs boson, 2 neutrinos, 1 positron and 1 antimuon.
The universe contains 2 neutrinos, 1 positron, 1 antimuon, 1 bottom antiquark and 1 bottom quark.
Simulation ended after 153.2 yoctoseconds.

5
Você também pode adicionar a versão não compactada à resposta?
Ray

É a "legibilidade!" a versão descompactada?
Manoj Kumar

7

QBasic 2161 * .9 = 1945 2028 * .9 = 1825 1854 * .9 = 1669 bytes

Agora que QBasic é o LOTM, pensei em revisar minha primeira resposta sobre o PPCG de todos os tempos. Conseguiu derrubar 140 bytes, nada mal!

Com base nos comentários de @TaylorScott e @DLosc, eu fiz uma reformulação completa:

  • Manutenção do tempo alterada
  • A formatação agora está em conformidade com as especificações
  • Economizou uma tonelada de bytes transformando uma matriz em uma sequência indexada

O código

SUB f(p$,c)
DIM e$(25)
q$=" quark
a$=" antiquark
e$(1)="HHiggs boson
e$(2)="bbottom"+q$
e$(3)="1bottom"+a$
e$(4)="WW boson
e$(5)="gGluon
e$(6)="TTau lepton
e$(7)="2Tau antilepton
e$(8)="ccharm"+q$
e$(9)="3charm"+a$
e$(10)="ZZ boson
e$(11)="pphoton
e$(12)="mmuon
e$(13)="4antimuon
e$(14)="0top"+q$
e$(15)="5top"+a$
e$(16)="+positron
e$(17)="nneutrino
e$(18)="6antineutrino
e$(19)="-electron
e$(20)="ddown"+q$
e$(21)="7down"+a$
e$(22)="sstrange"+q$
e$(23)="8strange"+a$
e$(24)="uup"+q$
e$(25)="9up"+a$
FOR i=1TO 25
IF LEFT$(e$(i),1)=p$THEN ?str$(c)" "MID$(e$(i),2);
NEXT
IF c>1THEN?"s";
END SUB
RANDOMIZE TIMER
z=100
INPUT x
p$=string$(x,"H")
1:b=0
REDIM m$(LEN(p$))
FOR i=1TO LEN(p$)
m$(i)=MID$(p$,i,1)
NEXT
p$=s$(m$())
t=t+1
?"The universe contains";
FOR i=1TO LEN(p$)
y$=MID$(p$,i,1)
z$=MID$(p$,i+1,1)
c=c+1
IF(y$=z$ AND i<LEN(p$))=0THEN f y$,c:c=0
NEXT
?
r$="
FOR i=1TO LEN(p$)
d&=(RND*z)*z
e&=(RND*z)*(z^2)
q$=MID$(p$,i,1)
IF INSTR("HWZ02",q$) THEN b=1
r$=r$+g$(d&,e&,q$)
NEXT
p$=r$
IF b GOTO 1
?"Simulation ended after"t/10"yoctoseconds.
FUNCTION g$(d&,p&,q$)
DIM e$(28)
FOR i=1TO 28
x$=Mid$("H00433099979405H004330999550m4H004330998440ZpH004330996210ppH004330980310ZZH004330947610c3H004330877210T2H004330789010ggH004330648010WWH004330000000b12012950666670W12012950333340W82012950000000W70012950666670Wb0012950333340Ws0012950000000WdW0500006666702nW0500003333404nW050000000000+nZ050000882010c3Z050000764010u9Z050000612010b1Z050000460010s8Z050000308010d7Z050000274010T2Z050000240010m4Z050000206010-+Z050000000000n6",15*i+1,15)
a&=VAL(MID$(x$,8,7))
g$=q$
IF LEFT$(x$,1)=q$ THEN
IF d&<VAL(MID$(x$,2,5)) THEN
IF(p&>a& OR a&=0) THEN
g$=RIGHT$(x$,2)
EXIT FUNCTION
ENDIF
ENDIF
ENDIF
NEXT
END FUNCTION
FUNCTION s$(n$())
x=UBOUND(n$)
FOR i=1TO x:FOR J=1TO x
IF n$(i)<n$(J)THEN SWAP n$(i),n$(J)
NEXT j,i
FOR i=1TO UBOUND(n$)
a$=a$+n$(i)
NEXT
s$=a$
END FUNCTION

Saída de amostra

? 3
The universe contains 3 Higgs bosons
The universe contains 3 Higgs bosons
The universe contains 3 Higgs bosons
The universe contains 3 Higgs bosons
The universe contains 1 bottom antiquark 2 Higgs bosons 1 bottom quark
The universe contains 1 bottom antiquark 2 Higgs bosons 1 bottom quark
The universe contains 2 bottom antiquarks 1 Higgs boson 2 bottom quarks
The universe contains 2 bottom antiquarks 1 Higgs boson 2 bottom quarks
The universe contains 2 bottom antiquarks 1 Higgs boson 2 bottom quarks
The universe contains 2 bottom antiquarks 1 Higgs boson 2 bottom quarks
The universe contains 2 bottom antiquarks 1 Higgs boson 2 bottom quarks
The universe contains 2 bottom antiquarks 1 Higgs boson 2 bottom quarks
The universe contains 2 bottom antiquarks 1 Higgs boson 2 bottom quarks
The universe contains 2 bottom antiquarks 1 Higgs boson 2 bottom quarks
The universe contains 2 bottom antiquarks 1 Higgs boson 2 bottom quarks
The universe contains 2 bottom antiquarks 1 Higgs boson 2 bottom quarks
The universe contains 2 bottom antiquarks 1 Higgs boson 2 bottom quarks
The universe contains 2 bottom antiquarks 1 Higgs boson 2 bottom quarks
The universe contains 2 bottom antiquarks 1 Higgs boson 2 bottom quarks
The universe contains 2 bottom antiquarks 1 Higgs boson 2 bottom quarks
The universe contains 2 bottom antiquarks 1 Higgs boson 2 bottom quarks
The universe contains 2 bottom antiquarks 1 Higgs boson 2 bottom quarks
The universe contains 3 bottom antiquarks 3 bottom quarks
Simulation ended after 2.3 yoctoseconds.

Sim, nos anos seguintes ao golfe ... mas a formatação da saída não corresponde aos requisitos rigorosos da questão. ??
DLosc

1
Para - ~ 200 bytes, o uso For i=0To 28 x$=Mid$("H00433099979405H004330999550m4H004330998440ZpH004330996210ppH004330980310ZZH004330947610c3H004330877210T2H004330789010ggH004330648010WWH004330000000b12012950666670W12012950333340W82012950000000W70012950666670Wb0012950333340Ws0012950000000WdW0500006666702nW0500003333404nW050000000000+nZ050000882010c3Z050000764010u9Z050000612010b1Z050000460010s8Z050000308010d7Z050000274010T2Z050000240010m4Z050000206010-+Z050000000000n6",15*i+1,15)... Nextem função de f$()mais variedadee$()
Taylor Scott

Em função s$(), Next:Nextpode ser Next j,i, e você deve verificar se as ?instruções precisam de todos esses ;s. Mas também parece que sua saída não atende a especificação no momento
Taylor Scott

@DLosc e Taylor, examinarei as duas sugestões no próximo fim de semana; Estou um pouco ocupado antes disso ... Obrigado.
steenbergh

6

C # 6, 3619 3617 3611 3586 - 10% = 3227,4 bytes

O programa utiliza dois argumentos opcionais para o número de Bósons de Higgs iniciais e a semente a ser usada na classe Random.

using System;using System.Collections.Generic;class a{List<P>L;List<Q>S;double Y;static void Main(string[]a){a b;b=a.Length<1?new a():a.Length<2?new a(int.Parse(a[0])):new a(int.Parse(a[0]),int.Parse(a[1]));}a(int j=1,int e=1){Random r=new Random(e);L=new List<P>();S=new List<Q>();for(int i=0;i<j;i++)L.Add(new H());while(L.Count>0){List<P>l=new List<P>();foreach(P p in L){List<P>d=p.C(r);if(d!=null)foreach(P y in d){if(y.GetType()==typeof(Q))S.Add((Q)y);else l.Add((P)y);}else l.Add(p);}L=l;Y+=.1;W();}var s=$"Simulation ended after {Y} yoctosecond";if(Y!=1d)s+="s";Console.WriteLine(s+".");}void W(){var t="";Dictionary<string,int>N=new Dictionary<string,int>();int M=0;foreach(P x in L){t=x+"";if(N.ContainsKey(t))N[t]++;else{N.Add(t,1);M++;}}foreach(Q x in S){t=x+"";if(N.ContainsKey(t))N[t]++;else{N.Add(t,1);M++;}}var o="The universe contains ";int i=N.Keys.Count;foreach(var x in N.Keys){i--;if(M==1){o+=$"{N[x]} {x}";if(N[x]!=1)o+="s";}else if(M==2){o+=$"{N[x]} {x}";if(N[x]!=1)o+="s";if(i!=0)o+=" and ";}else{if(i<1){o+=$"and {N[x]} {x}";if(N[x]!=1)o+="s";}else{o+=$"{N[x]} {x}";if(N[x]!=1)o+="s";o+=", ";}}}Console.WriteLine(o+".");}}abstract class P{public static string[]Z=new string[]{"photon","gluon","positron","electron","quark","lepton","muon","neutrino"};public double l;public abstract List<P>D(Random r);public List<P>C(Random r){List<P>d=null;if(r.NextDouble()<l)d=D(r);return d;}}class H:P{public H(){l=.000433;}public override List<P>D(Random r){var d=new List<P>();Action<P>U=d.Add;var n=r.NextDouble();if(n<.648){U(new Q("bottom "+Z[4]));U(new Q("bottom anti"+Z[4]));}else if(n<.789){U(new W());U(new W());}else if(n<.8772){U(new Q(Z[1]));U(new Q(Z[1]));}else if(n<.9476){U(new Q("tau "+Z[5]));U(new Q("antitau "+Z[5]));}else if(n<.9803){U(new Q("charm "+Z[4]));U(new Q("charm anti"+Z[4]));}else if(n<.9962){U(new Z());U(new Z());}else if(n<.99843){U(new Q(Z[0]));U(new Q(Z[0]));}else if(n<.99954){U(new Z());U(new Q(Z[0]));}else if(n<.999784){U(new Q(Z[6]));U(new Q("anti"+Z[6]));}else{U(new T(0>1));U(new T(1>0));}return d;}public override string ToString(){return"Higgs Boson";}}class W:P{public W(){l=.5;}public override List<P> D(Random r){var d=new List<P>();var n=r.NextDouble();d.Add(new Q(Z[7]));if(n<1/3d)d.Add(new Q(Z[2]));else if(n<2/3d)d.Add(new Q("anti"+Z[6]));else d.Add(new Q("antitau "+Z[5]));return d;}public override string ToString(){return"W Boson";}}class Z:P{public Z(){l=.5;}public override List<P>D(Random r){var d=new List<P>();var n=r.NextDouble();Action<P>U=d.Add;var t=Z[4];if(n<.206){U(new Q(Z[7]));U(new Q("anti"+Z[7]));}else if(n<.24){U(new Q(Z[3]));U(new Q(Z[2]));}else if(n<.274){U(new Q(Z[6]));U(new Q("anti"+Z[6]));}else if(n<.308){U(new Q("tau "+Z[5]));U(new Q("antitau "+Z[5]));}else if(n<.46){U(new Q("down "+t));U(new Q("down anti"+t));}else if(n<.612){U(new Q("strange "+t));U(new Q("strange anti"+t));}else if(n<.764){U(new Q("bottom "+t));U(new Q("bottom anti"+t));}else if(n<.882){U(new Q("up "+t));U(new Q("up anti"+t));}else{U(new Q("charm "+t));U(new Q("charm anti"+t));}return d;}public override string ToString(){return"Z Boson";}}class T:P{bool A;public T(bool a){A=a;l=.1295;}public override List<P>D(Random r){var d=new List<P>();var n=r.NextDouble();d.Add(new W());if(n<1/3d)d.Add(new Q("down "+Z[4]));else if(n <2/3.0)d.Add(new Q("strange "+Z[4]));else d.Add(new Q("bottom "+Z[4]));return d;}public override string ToString(){var r=A?"top anti":"top ";return r+Z[4];}}class Q:P{string N;public Q(string n){N=n;}public override List<P>D(Random r){return null;}public override string ToString(){return N;}}

Eu não deveria ter usado objetos para isso, provavelmente tentarei fazer uma segunda solução usando matrizes, mas provavelmente seria semelhante à solução C ++ já publicada. O número de bósons de Higgs com quem posso lidar também é severamente limitado, acho que pelo menos uma hora para H = 1.000.000. Números menores funcionam razoavelmente bem.

Saída de amostra:

$ b
// Default h=1,seed=1
The universe contains 1 Higgs Boson.
...
The universe contains 1 bottom quark and 1 bottom antiquark.
Simulation ended after 65.5000000000006 yoctosecond.

$ b 10 12345
The universe contains 10 Higgs Bosons.
The universe contains 9 Higgs Bosons, 1 bottom quark, and 1 bottom antiquark.
The universe contains 8 Higgs Bosons, 2 W Bosons, 1 bottom quark, and 1 bottom antiquark.
The universe contains 8 Higgs Bosons, 1 bottom quark, 1 bottom antiquark, 2 neutrinos, and 2 antitau leptons.
The universe contains 7 Higgs Bosons, 2 bottom quarks, 2 bottom antiquarks, 2 neutrinos, and 2 antitau leptons.
The universe contains 6 Higgs Bosons, 3 bottom quarks, 3 bottom antiquarks, 2 neutrinos, and 2 antitau leptons.
The universe contains 5 Higgs Bosons, 4 bottom quarks, 4 bottom antiquarks, 2 neutrinos, and 2 antitau leptons.
The universe contains 2 W Bosons, 4 Higgs Bosons, 4 bottom quarks, 4 bottom antiquarks, 2 neutrinos, and 2 antitau leptons.
The universe contains 1 W Boson, 4 Higgs Bosons, 4 bottom quarks, 4 bottom antiquarks, 3 neutrinos, 2 antitau leptons, and 1 antimuon.
The universe contains 4 Higgs Bosons, 4 bottom quarks, 4 bottom antiquarks, 4 neutrinos, 2 antitau leptons, and 2 antimuons.
The universe contains 3 Higgs Bosons, 5 bottom quarks, 5 bottom antiquarks, 4 neutrinos, 2 antitau leptons, and 2 antimuons.
The universe contains 2 Higgs Bosons, 6 bottom quarks, 6 bottom antiquarks, 4 neutrinos, 2 antitau leptons, and 2 antimuons.
The universe contains 1 Higgs Boson, 2 W Bosons, 6 bottom quarks, 6 bottom antiquarks, 4 neutrinos, 2 antitau leptons, and 2 antimuons.
The universe contains 1 Higgs Boson, 1 W Boson, 6 bottom quarks, 6 bottom antiquarks, 5 neutrinos, 2 antitau leptons, and 3 antimuons.
The universe contains 1 Higgs Boson, 6 bottom quarks, 6 bottom antiquarks, 6 neutrinos, 2 antitau leptons, 3 antimuons, and 1 positron.
The universe contains 7 bottom quarks, 7 bottom antiquarks, 6 neutrinos, 2 antitau leptons, 3 antimuons, and 1 positron.
Simulation ended after 540.500000000054 yoctoseconds.

Vou postar as duas últimas linhas para a execução h = 1000000 quando terminar, provavelmente mais tarde hoje. Como prometido:

$ b 1000000
(a few hours, 35K lines, and 15MB later)
The universe contains 653391 bottom quarks, 653271 bottom antiquarks, 36336 charm quarks, 36336 charm antiquarks, 176724 gluons, 71397 tau leptons, 165604 antitau leptons, 5626 photons, 288869 neutrinos, 95047 positrons, 95556 antimuons, 5254 strange quarks, 5130 strange antiquarks, 1389 muons, 1081 electrons, 5240 down quarks, 5104 down antiquarks, 6529 antineutrinos, 3862 up quarks, and 3862 up antiquarks.
Simulation ended after 3599.29999999782 yoctoseconds.

De uma olhada rápida, há um espaço em branco inútil em else {U(new T(0>1))e múltiplo em n < 2 / 3.0e um em n <2/3.0.
Yytsi 24/09/16

@TuukkaX Obrigado, senti falta deles. Conseguiu salvar outro byte, substituindo o 3.0 por 3d, deve ter adicionado essa linha depois de alterar o primeiro.
Yodle 26/09/16

Um em if (a.Length, e outro em if (N[x]!=1, terceiro em o+= $. Além disso, você está analisando a[0]um número inteiro duas vezes, quando o resultado pode ser salvo em um número inteiro. Eu acho que Y==1.0pode ser Y==1., mas não tenho certeza disso. i!=0poderia ser i. Não sei se suas variáveis ​​podem realmente negar, mas se não, você pode substituir ==0s por <1. O título deve dizer C # 6, já que você está usando interpolação de string.
Yytsi 26/09/16

@TuukkaX Infelizmente, o C # não permite if (número inteiro), a menos que eu esteja fazendo algo errado. E reduzi meu método Main de uma maneira diferente, mas não acho possível atribuir um [0] a um número inteiro de qualquer maneira, se não houver argumentos (o padrão é executar com h = 1 e seed = 1) . Obrigado por tudo o resto!
Yodle

5

Mathematica, 950 bytes-10% = 855 bytes

Usando a compressão de expressão:

ToExpression[Uncompress["1:eJxdVG1v2jAQ7of9kMyVpna9pkkKLV0aROlW2AQVb1MqPGsKYCBaYtPEjFLgf+zn7vKGaD/kse/J+fz4zuePI9nr//twdOQ5ZTt0DHvkDLxRwGkTPGZHTs8TExnez6U/5nYvN3vcC+zAaXExU3P7l2Faz7T7m31xiEZuqwPZV5EvZrRLqcUYu62mdH/lq/E8IU3GoAmk6c9msVaXsRQEXoHUpVIy1LpLL/pDYLgn7oTynzPSBeIWKxpAGsEymQ1aQAbeUmvxhUrs3EzWBTk1BXI/96J99IfCPgiOOw6L4AsgnbnEpTGBNpB2us8aSOIepsYLbiIXRbynzDqI1sEIMvZVlDgLII98mWRFEhhnYcSe4EC+BXycua6AYPo8MePvDl6w+Y6o6qtciUMnmVO5xx2Qn28k1VMi+8uSqrlzTBBt83DEoy4dQXPrbofbl+0Tg/DsDK/CQ+ApxQU9yYt3jHX7PqU9ym4N3YSIbvSrUgV0s2SCXqlYoBvXRgnx0rpGNMs3iIZlXSaDaZrJYFilUjaaV7vz6mbzCsMdbFxwERvQQMSCtnCYwgPiMP29gEU67yC2YY34Ak+7HV4khsnZayonmjYdEOiwTrGFiG4uw/q+dTN0y7gCA8WW3qFZtt6jWckwVSxgjJH5gZhcsYQ24gpWiNmx6nCXnwRFDBmcYHZPD3Jo3WSSXZBpElYpvqI3g99wnJbp9NNFbcTs2Hm+qJ08yij0gtq9XAoV0xG70HvLgJ9XW36sTu0O3ihFyWDOtaXw//Io5tpYCuX5eJOxB9PG/CF9QYvSDvBWxQsZc7rJGh+1BbXYcXwoZiYQAkTD1icsIf2CAoIqNz6YgH54PvzSdtcJs1PluZw+9gxu50uhcTHhE82bKh69eSswFZ/D9KlYy7FCOah6EmOg/5kZdRM="]]

Código não compactado (1168 bytes-10% = 1051,2 bytes):

a=5;m=0;b=Table[H,a];r=RandomChoice;R=RandomReal;l=Length;
q[Q_]:=" "<>ToString[Q[[2]]]<>" "<>Switch[Q[[1]],H,"Higgs Boson",z,"Bottom Quark",Z,"Bottom Antiquark",W,"W Boson",G,"Gluon",TL,"Tau Lepton",L,"Tau Antilepton",f,"Charm Quark",F,"Charm Antiquark",Z,"Z Boson",p,"Photons",M,"Muon",y,"Antimuon",x,"Top Quark",X,"Top Antiquark",P,"Positron",n,"Neutrino",c,"Antineutrino",e,"Electron",w,"Strange Antiquark",W,"Strange Quark",M,"Down Antiquark",o,"Down Quark",A,"Up Antiquark",B,"Up Quark"]
While[MemberQ[b,H|W|Z|x|X],m++;b=Flatten[(Switch[#,H,If[R[]<0.1,r[{.648,.141,.882,.0704,.0327,.0159,.00223,.00111,.000244,.000216}->{{z,Z},{W,W},{G,G},{TL,L},{f,F},{Z,Z},{p,p},{Z,P},{M,y},{x,X}}],H],W,If[R[]<0.5,r[{{P,n},{y,n},{L,n}}],W],Z,If[R[]<0.5,r[{0.206,0.034,0.034,0.034,0.152,0.152,0.152,0.118,0.118}->{{n,c},{e,P},{M,y},{TL,L},{o,M},{w,w},{z,Z},{B,A},{f,F}}],Z],(x|X),If[R[]<0.1295,r[{{W,o},{W,w},{W,z}}]],_,#]
)&/@b];s=q/@(Normal@Counts[b]/.Rule->List);Print["The universe contains"<>StringJoin[Flatten[Transpose[{Table[If[l@s==i,If[l@s==1,""," and"],If[i==1,"",","]],{i,1,l@s}],s}]]]<>"."];]
Print["Simulation ended after "<>ToString[0.1*m]<>" yoctoseconds."]

O parâmetro inicial pode ser escolhido alterando o valor de a.

Percebi que usei a probabilidade errada para o bóson de Higgs, mas atualmente não posso alterá-la (em algumas horas). Portanto, adicione 3 ou 4 bytes à solução atual. (Foi um valor de teste)


3
Por quase um ano, o melhor foi o anterior, e você postou o seu apenas 10 horas depois do meu! Está frio, cara. :)
Alex Howansky

2
Desde que você superou o desafio, eu tive que fazê-lo também. Eu sinto Muito. : D
Julien Kluge 24/09

5

Perl, 973 986 959 944 bytes -10% = 849,6 pontos

O recuo e as novas linhas não fazem parte do código e são fornecidos apenas para que você não fique rolando por 30 anos para ler tudo.

Existem algumas otimizações de 0 byte que eu nunca me preocupei em desfazer.

%p=(H,Higgs.($o=$".Boson),W,W.$o,Z,Z.$o,B,Bottom.($Q=$".Quark),b,Bottom.($q=$".Antiquark),G,Gluon,A,Tau.($t=$".Lepton),a,Antitau.$t,P,Photon,M,Muon,w,Antimuon,T,Top.$Q,t,Top.$q,e,Positron,N,Neutrino,n,Antineutrino,E,Electron,D,Down.$Q,d,Down.$q,S,Strange.$Q,z,Strange.$q,U,Up.$Q,u,Up.$q,C,Charm.$Q,c,Charm.$q);
%d=(H,[433e-6,.648,Bb,.141,WW,.0882,GG,.0704,Aa,.0327,Cc,.0159,ZZ,.00223,PP,.00111,ZP,244e-6,Mw,216e-6,Tt],W,[.5,$x=1/3,eN,$x,wN,$x,tN],Z,[.5,.206,Nn,.034,Ee,.034,Mw,.034,Aa,.152,Dd,.152,Sz,.152,Bb,.152,Uu,.118,Uu,.118,Cc],T,[.1295,$x,WD,$x,WS,$x,WB],t,[.1295,$x,Wd,$x,Wz,$x,Wb]);
for(@a=(H)x<>;grep/[HWZTt]/,@a;$z++){
    for$m(@a){
        @b=(@b,$m),next if$d{$m}[0]<rand;
        $e=rand;
        ($e-=$d{$m}[($_*=2)+1])>0||($e=2,@b=(@b,split//,$d{$m}[$_+2]))for 0..9
    }
    (@a,@b,%u,$w)=@b;
    $u{$_}++for@a;
    $w.=" $u{$_} $p{$_}".($u{$_}>1?'s,':',')for keys%u;
    say"The universe contains",$w=~s/.$/./r=~s/,([^,]+)$/ and$1/r
}
$z/=10;say"Simulation ended after $z yoctoseconds."

Obviamente, a maior parte do código está criando os hashes iniciais. %pcontém os nomes de todas as partículas, explorando o recurso de palavra de barra do Perl. %rdetermina as taxas de decaimento. Se não estiver em destaque aqui, não decairá. %dcontém as partículas de decomposição.

Como a ordem das partículas na saída não importa, não me importo de alterá-la da maneira aleatória em que Perl acessa as chaves no hash, o que leva a coisas como as seguintes:

[snip]
The universe contains 1 Higgs Boson.
The universe contains 1 Higgs Boson.
The universe contains 2 W Bosons.
The universe contains 2 Neutrinos, 1 Positron and 1 Top Antiquark.
The universe contains 1 Top Antiquark, 1 Positron and 2 Neutrinos.
The universe contains 1 Top Antiquark, 1 Positron and 2 Neutrinos.
The universe contains 1 Top Antiquark, 1 Positron and 2 Neutrinos.
The universe contains 2 Neutrinos, 1 Positron and 1 Top Antiquark.
The universe contains 1 Positron, 1 Top Antiquark and 2 Neutrinos.
The universe contains 2 Neutrinos, 1 Top Antiquark and 1 Positron.
The universe contains 1 Positron, 1 Strange Antiquark, 2 Neutrinos, 1 Bottom Antiquark and 2 W Bosons.
The universe contains 1 W Boson, 1 Bottom Antiquark, 2 Neutrinos, 1 Positron and 1 Strange Antiquark.
The universe contains 2 Neutrinos, 1 Bottom Antiquark, 1 W Boson, 1 Strange Antiquark and 1 Positron.
The universe contains 1 W Boson, 1 Bottom Antiquark, 2 Neutrinos, 1 Strange Antiquark and 1 Positron.
The universe contains 1 Bottom Antiquark, 4 Neutrinos, 1 Antimuon, 2 Positrons and 1 Strange Antiquark.

Esta foi realmente uma aventura emocionante. Quebra-cabeça maravilhoso, honestamente, eu me diverti muito! :)


5

Python 3.6.1, 1183 1157 ... 905 889 * 0,9 = 800,1 bytes

A primeira vez que você enviou um desses, mas esse desafio parecia bem divertido, então vamos lá ...

Quase certamente não é tão golfe quanto poderia ser, mas eu sou bastante inexperiente nisso, então qualquer dica é bem-vinda.

from random import*
w,z='WZ';b,q,v=' boson',' .quark',[1]*3;p,n,u,t={'H':[433e-6,['Bb',w*2,'GG','Xx','Cc',z*2,'PP','ZP','Mm','Tt'],[6480,1410,882,704,32.7,15.9,2.23,1.11,.244,.216]],w:[.5,['FN','mN','xN'],v],z:[.5,['Nn','EF','Mm','Xx','Dd','Ss','Bb','Uu','Cc'],[2060]+[340]*3+[152]*3+[118]*2],'T':[.1295,['WD','WS','WB'],v]},{'H':'Higgs'+b,'B':'bottom'+q,w:w+b,'G':'gluon','X':'.tau lepton','C':'charm'+q,z:z+b,'P':'photon','M':'.muon','T':'top'+q,'E':'electron','F':'positron','N':'.neutrino','D':'down'+q,'S':'strange'+q,'U':'up'+q},['H']*int(input()),0
while{*u}&{*p}:
    for x in[*u]:
        if x in p and random()<p[x][0]:u.remove(x);u+=choices(*p[x][1:])[0]
    print("The universe contains %s."%' and'.join((', '.join(str(u.count(x))+' '+n[x.upper()].replace('.',(x>x.upper())*'anti')+(1<u.count(x))*'s'for x in{*u})).rsplit(',',1)));t+=.1
print('Simulation ended after %.1f yoctoseconds.'%t)

Experimente online!

Edit: Por uma questão de brevidade, uma lista resumida das edições que fiz (obrigado comentaristas pela ajuda!):

  • Economizou 25 bytes graças ao Assistente de gato (ponto e vírgula em vez de novas linhas) e a outra resposta do Python (salvou alguns bytes definindo cadeias).
  • Descobrimos mais algumas coisas para salvar outros 107 (!) Bytes, principalmente apenas uma melhor organização dos dict e isso não é mais uma função.
  • Percebeu- random.choices()se probabilidades ponderadas, não porcentagens, para que eu pudesse economizar alguns bytes ao mudar algumas coisas de dez a 28 bytes salvos! A probabilidade de decaimento de Higgs estava errada - eu li 0,43% em vez de 0,043%, o que custou dois bytes.
  • Salvou mais 28 bytes de truques extravagantes variados - definir cruzamento em vez de any(), +=em vez de list.extend()e uma diferente importafirmação.
  • Trocou os ditados aninhados por um ditado de listas, usado choices(*p[x][1:])para salvar um casal e x and y or zevitar if...else...or.
  • Atribuição um pouco melhor, o LBYL funciona melhor e é substituído enumerate()por copiar o universo e usá-lo list.remove()no original (o enumeratemétodo foi quebrado de qualquer maneira).
  • Corrigido algumas coisas tolas que foram perdidas, melhor print()declaração e ifdeclarações mescladas . Removidos alguns suportes desnecessários.

Versão mais legível:

from random import *
w,z='WZ'
b,q,v=' boson',' .quark',[1]*3
        # Decayable particle products/probabilities
p,n,u,t={'H':[433e-6,['Bb',w*2,'GG','Xx','Cc',z*2,'PP','ZP','Mm','Tt'],[6480,1410,882,704,32.7,15.9,2.23,1.11,.244,.216]],
            w:[.5,['FN','mN','xN'],v],z:[.5,['Nn','EF','Mm','Xx','Dd','Ss','Bb','Uu','Cc'],[2060]+[340]*3+[152]*3+[118]*2],
            'T':[.1295,['WD','WS','WB'],v]},
        # Particle names
        {'H':'Higgs'+b,'B':'bottom'+q,w:w+b,'G':'gluon','X':'.tau lepton','C':'charm'+q,z:z+b,
            'P':'photon','M':'.muon','T':'top'+q,'E':'electron','F':'positron','N':'.neutrino',
            'D':'down'+q,'S':'strange'+q,'U':'up'+q},
        # Universe
        ['H']*int(input()),
        # Time taken
        0
while {*u} & {*p}: # While any particles can still decay
    for x in[*u]: # Iterate through them
        if x in p and random()<p[x][0]: # Check if they should decay
            u.remove(x) # If they should, remove them
            u+=choices(*p[x][1:])[0] # And add in the products
    # Join particle names with their counts together, separated by ',', add 'anti' where
    # needed, add 's' where needed, replace last ',' with 'and', then print.
    a = ' and'.join((', '.join(str(u.count(x))
                    + ' '
                    + n[x.upper()].replace('.',(x>x.upper())*'anti')
                    + (1<u.count(x))*'s' for x in {*u})).rsplit(',',1))
    print("The universe contains %s." % a)
    t+=.1
print('Simulation ended after %.1f yoctoseconds.'%t)

Amostra de saída com bósons de Higgs 5000 - pode executar uma execução maior mais tarde para ver se existe algum decaimento do quark superior:

The universe contains 1 up antiquark, 23 charm quarks, 1 electron, 23 charm antiquarks, 371 tau leptons, 1542 neutrinos, 500 antimuons, 16 antineutrinos, 505 positrons, 4 muons, 3 photons, 3373 bottom quarks, 3373 bottom antiquarks, 1 up quark, 916 gluons and 897 antitau leptons.
Simulation ended after 2410.5 yoctoseconds.

Se eu fiz algo errado, entre em contato e tentarei consertar!


4

Ruby, 997 995 bytes -10% = 895.5 pontos

edit: adicionado 'e' como o último delimitador, conforme observado pela breadbox

Publicando pela primeira vez no PPCG, esse é um desafio antigo, mas eu me diverti muito fazendo isso. Aqui está o código

s=%w(boson quark top bottom anti tau lepton charm muon neutrino down strange up)
t="Higgs 0;Z 0;W 0;2 1;2 41;3 1;3 41;gluon;5 6;45 6;7 1;7 41;photon;8;48;positron;9;49;electron;#a 1;#a 41;#b 1;#b 41;#c 1;#c 41"
h=[4.33e-2,50,50,12.95]
d=[[64.8,14.1,8.82,7.04,3.27,1.59,0.223,0.111,0.0244,0.0216],[20.6,*[3.4]*3,*[15.2]*3,*[11.8]*2],*[[33.3]*3]*3]
r=["fgcchhijklbbmmbmnode","qrspnoijtuvwfgxykl","pqoqjq","ctcvcf","ctcvcf"]
r=r.map{|a|a.chars.map{|e|e.ord-97}}
s.size.times{|i|c=i>9?"#"+(i+87).chr: i.to_s;t=t.gsub(c,s[i])}
t=t.split(';')
z=Random.new
p=[0]*25
p[0]=gets.to_i
o=0
f=->p{puts"The universe contains "+(*a,b=(0..24).map{|i|e=p[i];e>0?"#{e} "+t[i]+(e>1?"s":""):nil}.compact;a*", "+(a.size>0?" and ":"")+b)+"."}
while p[0..4].sum>0 do
    f[p]
    q=p.clone
    (0..4).map{|i|p[i].times{|j|a=z.rand(100.0);a<h[i]?(q[i]-=1;a=z.rand(100.0);d[i].size.times{|k|a<d[i][k]?(q[r[i][k]]+=1;q[r[i][k+1]]+=1):a-=d[i][k]}):0}}
    p=q.clone
    o+=1
end
f[p]
puts "Simulation ended after #{o/10.0} yoctoseconds."

As strings são compactadas fatorando palavras recorrentes (vars se t). Os produtos de decomposição são armazenados compactamente como string (var r), cada letra é uma partícula. Uma função fimprime o estado do universo mapeando a matriz de partículas em seqüências de caracteres. Sinto que existem alguns bytes para cortar na linha de atualização de estado, mas não consigo encontrar nada melhor.

Saída de amostra

[snip]
The universe contains 1 Higgs boson.
The universe contains 1 Higgs boson.
The universe contains 3 W bosons, 4 gluons and 1 tau lepton.
The universe contains 3 W bosons, 4 gluons and 1 tau lepton.
The universe contains 2 W bosons, 4 gluons, 1 tau lepton, 1 antimuon and 1 neutrino.
The universe contains 2 W bosons, 4 gluons, 1 tau lepton, 1 antimuon and 1 neutrino.
The universe contains 1 W boson, 4 gluons, 1 tau lepton, 3 antimuons, 1 positron and 4 neutrinos.
The universe contains 4 gluons, 1 tau lepton, 4 antimuons, 1 positron and 5 neutrinos.
Simulation ended after 653.2 yoctoseconds.

atuação

Não é tão ruim! Ele calculou 100000 bóson de Higgs em 25seg

The universe contains 64751 bottom quarks, 93044 bottom antiquarks, 170984 gluons, 59927 tau leptons, 33038 antitau leptons, 14718 charm quarks, 12419 charm antiquarks, 5250 muons, 261567 antimuons, 53148 positrons, 305169 neutrinos, 2142 antineutrinos, 1575 electrons, 14080 down quarks and 7926 down antiquarks.
Simulation ended after 3131.4 yoctoseconds.

Bem vindo ao site! Você precisa dos espaços ao >seu redor while? Faz um tempo desde que eu fiz alguma coisa em Ruby.
Wheat Wizard

Um problema: em sua lista de partículas, a última vírgula precisa ser substituída por `e 'para atender aos requisitos do desafio.
breadbox

2

D, 1172 1101 bytes - 10% = 990,9 bytes

import std.random,std.conv,std.stdio,std.algorithm,std.range;alias I=int,V=void,S=string,F=float,U=uniform01!F,W=writef,J=join,X=split;V main(S[]v){I[26]c;c[0]=to!I(v[1]);S[84]s;s[65..$]="antiX bosonXcharm Xdown XelectronXZXgluonXHiggsXtop Xbottom Xup Xtau leptonXmuonXneutrinoXWXphotonXquarkXpositronXstrange ".X('X');S[]f="HBXOBXFBXKQXKAQXDQXDAQXIQXIAQXJQXJAQXSQXSAQXCQXCAQXLXALXEXRXGXPXMXAMXNXAN".X('X');V 
D(I i,F p,F[]d,S v){d~=200;if(c[i]&&U()<p){c[i]--;p=U();foreach(j,q; d){if(p<q/100){c[v[2*j]-65]++;c[v[2*j+1]-65]++;break;}}}}S
C(T)(T s){return(s.length>1)?s[0..$-1].J(", ")~" and "~s[$-1]:s.J(" and ");}I
y=0;while(1){W("The universe contains "~C(iota(0,c.length).filter!(i=>c[i]).map!(i=>to!S(c[i])~" "~f[i].map!(a=>s[a]).J~((c[i]>1)?"s":"")).array)~".\n");y++;if(c[0]+c[1]+c[7]+c[8]<1)break;F[]u=[100/3.0,200/3.0];D(0,.000433,[.0216,.0460,.157,.38,1.97,5.24,12.28,21.1,35.2],"HIVWCUUUCCNOPQTTBBJK");D(2,.5,[11.8,23.6,38.8,54.,69.2,72.6,76.,79.4],"XYRSVWPQFGLMJKDENO");D(1,.5,u,"SXWXQX");D(7,.1295,u,"BFBLBJ");D(8,.1295,u,"BGBMBK");}W("Simulation ended after %f yoctoseconds.\n",y/10.0);}

Ungolfed

import std.random,std.conv,std.stdio,std.algorithm,std.range;
alias I=int,V=void,S=string,F=float,U=uniform01!F;

//uppercase is antiparticle.  The enums are replaced with constants
//in the golfed version.
enum P{ 
    h, w, z, //bosons
    u,U, d,D, t,T, b,B, s,S, c,C,//quarks
    l,L, //tau lepton, antitau lepton
    e,E, //electron,positron
    g, //gluon
    p, //photon
    m,M, //muon, antimuon
    n, N, //neutrino, antineutrino
};

void main(string[] v) {
    int[26]c;//particle counts
    c[0]=to!int(v[1]);//mandatory argument

    string format_particle(ulong i) {
        string[84] strs;
        strs[65..$]=["anti"," boson","charm ","down ","electron",/*f*/"Z",
        "gluon","Higgs",/*i*/"top ",/*j*/"bottom ",/*k*/"up ","tau lepton","muon","neutrino",/*o*/"W","photon","quark",/*r*/"positron","strange "];
        string[] fmt = [
            "HB","OB","FB",//bosons
            "KQ","KAQ",//up
            "DQ","DAQ",//down
            "IQ","IAQ",//top
            "JQ","JAQ",//bottom
            "SQ","SAQ",//strange
            "CQ","CAQ",//charm
            "L","AL",//Tau leptons
            "E","R",//electron/positron
            "G", //gluon
            "P", //photon
            "M","AM", //muon, antimuon
            "N", "AN", //neutrino, antineutrino
        ];
        //In the golfed version, we instead use X to delimit strings and call split to convert to array.

        return to!string(c[i])
            ~ " " ~ fmt[i].map!(a=>strs[a]).join
            ~ ((c[i]>1) ? "s" : "");
    }

    /* if there exist any of particle `i`, 
       it decays with probability `p`.
       into the particles specified in `v[j]`
       where `j` is drawn from distribution `decay_probs` */
    void decay(int i, float p, float[] decay_probs, P[] v...) {
        decay_probs ~= 2;//1.0, but with a margin for error in case of floating point precision issues
        if (c[i] && U()<p){
            c[i]--;

            p=U();
            foreach(j,q; decay_probs) {
                if (p<q) {
                    c[v[2*j]]++;
                    c[v[2*j+1]]++;
                    /*writef("Decay %s, Add: %s, %s\n",
                        format_particle(i),
                        format_particle(v[2*j]), format_particle(v[2*j+1]));*/
                    break;
                }
            }
        }
    }

    int y=0;
    while(1) {
        string commas(T)(T s) {
            return (s.length > 1)
                ?  s[0..$-1].join(", ") ~ " and " ~ s[$-1]
                :  s.join(" and ");
        }

        //print line for particle `d`
        writef("The universe contains " 
            ~ commas(
                iota(0,c.length)
                    .filter!(i=>c[i])
                    .map!(i=>format_particle(i))
                    .array) ~ ".\n");

        y++;
        if(c[P.h]+c[P.w]+c[P.t]+c[P.T]<1)break;

        F[] u = [1/3.0,2/3.0];
        decay(P.h, .000433,
            [.000216,.000460,.00157,.0038,.0197,.0524,.1228,.211,.352],
            P.t,P.T, P.m,P.M, P.z,P.p, P.p,P.p, P.z,P.z, P.c,P.C, P.l,P.L, P.g,P.g, P.w,P.w, P.b,P.B); 
        decay(P.z, .5,
            [.118,.236,.388,.54,.692,.726,.76,.794],
            P.n,P.N, P.e,P.E, P.m,P.M, P.l,P.L, P.d,P.D, P.s,P.S, P.b,P.B, P.u,P.U, P.c,P.C);
        decay(P.w,    .5, u, P.E,P.n, P.M,P.n, P.L,P.n);
        decay(P.t, .1295, u, P.w,P.d, P.w,P.s, P.w,P.b);
        decay(P.T, .1295, u, P.w,P.D, P.w,P.S, P.w,P.B);
        //In the golfed version, the list of enums is replaced by a string: each char is 65 + the enum's value.  D() is adjusted to subtract it again.
    }

    writef("Simulation ended after %f yoctoseconds.\n", y/10.0);
}

2

Kotlin : 1330 - 10% = 1197 bytes

Minha primeira submissão de código de golfe; muito ineficiente devido às listas serem mais golfistas que os mapas, mas aparentemente corretas! Funciona na implementação de JVM ou JS e utiliza um argumento (opcional).

operator fun String.minus(p:Pair<String,String>)=replace(p.first,p.second)
operator fun<A,B>A.div(b:B)=to(b)
val l=1.0
val e=l/3
val t=l-e
enum class V(val c:Double=.0,vararg val v:Pair<Pair<V,V>,Double>){E,F,G,P,L,AL,M,AM,N,AN,_Q,_AQ,CQ,CAQ,DQ,DAQ,SQ,SAQ,UQ,UAQ,WB(.5,P/N/e,AM/N/t,AL/N/l),TQ(.1295,WB/DQ/e,WB/SQ/t,WB/_Q/l),TAQ(.1295,WB/DAQ/e,WB/SAQ/t,WB/_AQ/l),ZB(.5,N/AN/.206,E/P/.24,M/AM/.274,L/AL/.308,DQ/DAQ/.46,SQ/SAQ/.612,_Q/_AQ/.764,UQ/UAQ/.882,CQ/CAQ/l),HiggsB(.000433,_Q/_AQ/.648,WB/WB/.789,G/G/.8772,L/AL/.9476,CQ/CAQ/.9803,ZB/ZB/.9962,F/F/.99843,ZB/F/.99954,M/AM/.999784,TQ/TAQ/l);fun d()=if(Math.random()<c)with(Math.random()){v.first{this<it.second}.first.toList()}else listOf(this)
override fun toString()=name-"_"/"bottom "-"A"/"anti"-"B"/" boson"-"C"/"charm "-"D"/"down "-"E"/"electron"-"F"/"photon"-"G"/"gluon"-"L"/"tau lepton"-"N"/"neutrino"-"M"/"muon"-"P"/"positron"-"Q"/"quark"-"S"/"strange "-"T"/"top "-"U"/"up "}
fun main(vararg a:String){var t=.0
var l=List(a.lastOrNull()?.toInt()?:1){V.HiggsB}
while(true){++t
var s="The universe contains"
with(l.toSet()){forEachIndexed{i,p->l.count{it==p}.let{s+=(" $it $p")
if(it>1)s+='s'
s+=when(size){i+1->"."
i+2->" and"
else->","}}}}
println(s)
if(l.filter{it.c>0}.isEmpty())break
for(p in l){l-=p;l+=p.d()}}
t/=10
print("Simulation ended after $t yoctoseconds.")}

Versão menos golfe

operator fun String.minus(p:Pair<String,String>)=replace(p.first,p.second)
operator fun<A,B>A.div(b:B)=to(b)
val l=1.0
val e=l/3
val t=l-e
enum class V(val c:Double=.0,vararg val v:Pair<Pair<V,V>,Double>){
    E,F,G,P,L,AL,M,AM,N,AN,_Q,_AQ,CQ,CAQ,DQ,DAQ,SQ,SAQ,UQ,UAQ,
    WB(.5,P/N/e,AM/N/t,AL/N/l),
    TQ(.1295,WB/DQ/e,WB/SQ/t,WB/_Q/l),
    TAQ(.1295,WB/DAQ/e,WB/SAQ/t,WB/_AQ/l),
    ZB(.5,N/AN/.206,E/P/.24,M/AM/.274,L/AL/.308,DQ/DAQ/.46,SQ/SAQ/.612,_Q/_AQ/.764,UQ/UAQ/.882,CQ/CAQ/l),
    HiggsB(.000433,_Q/_AQ/.648,WB/WB/.789,G/G/.8772,L/AL/.9476,CQ/CAQ/.9803,ZB/ZB/.9962,F/F/.99843,ZB/F/.99954,M/AM/.999784,TQ/TAQ/l);
    override fun toString()=name-
        "_"/"bottom "-
        "A"/"anti"-
        "B"/" boson"-
        "C"/"charm "-
        "D"/"down "-
        "E"/"electron"-
        "F"/"photon"-
        "G"/"gluon"-
        "L"/"tau lepton"-
        "N"/"neutrino"-
        "M"/"muon"-
        "P"/"positron"-
        "Q"/"quark"-
        "S"/"strange "-
        "T"/"top "-
        "U"/"up "
    fun d()=if(Math.random()<c)
        with(Math.random()){
            v.first{this<it.second}.first.toList()
        }else listOf(this)
}
fun main(vararg a:String){
    var t=.0
    var l=List(a.lastOrNull()?.toInt()?:99){V.HiggsB}
    while(true){
        ++t
        var s="The universe contains"
        with(l.toSet()){
            forEachIndexed{i,p->
                l.count{it==p}.let{
                    s+=(" $it $p")
                    if(it>1)s+='s'
                    s+=when(size){
                        i+1->"."
                        i+2->" and"
                        else->","
                    }
                }
            }
        }
        println(s)
        if(l.filter{it.c>0}.isEmpty())break
        for(p in l){l-=p;l+=p.d()}
    }
    t/=10
    print("Simulation ended after $t yoctoseconds.")
}

1

Uma apresentação bastante longa.

Não tanto assim, mas ainda mais curto que o outro python.

Tome a quantidade inicial de Higgs como entrada.

Python 3 , 1134 1120 bytes - 10% = 1020,6 1008 pontos

from random import *
n=int(input())
M=random
seed()
def D(i):
 for a in i:d[a]=d[a]+1 if a in d else 1
def X(p,A,B):
 for l in d[s]*' ':
  n[0]=1
  if M()<=p:d[s]-=1;r=M();D(A[B.index(next(x for x in B if x>r))])
s=lambda x:x.replace(Z,'')
Z,C,e,i,k,m,p,t,v='anti, boson,electron,gluon,neutrino,muon,photon,tau lepton,positron'.split(',')
B=' '+Z+'quark'
a='bottom'+B
c='charm'+B
f='down'+B
h="Higgs"+C
o='top'+B
u=Z+k
w="W"+C
x=Z+m
y=Z+t
z='Z'+C
S='strange'+B
U='up'+B
b,g,j,q,Q,T=map(s,[a,f,c,o,S,u])
d={h:n,0:0}
I=0
A=[(a,b),(w,w),(i,i),(t,y),(c,j),(z,z),(p,p),(z,p),(m,x),(o,q)]
B=[.648,.789,.8772,.9476,.9803,.9962,.99843,.99954,.999784,1]
O=[[k,v],[k,x],[k,y]]
E=[1/3,2/3,1]
F=[(u,k),(e,v),A[8],A[3],(g,f),(S,Q),A[0],(T,U),(c,j)]
G=[.206,.24,.274,.308,.46,.612,.764,.882,1]
H=[[w,g],[w,Q],[w,a]]
n={1}
while n:
 I+=1
 n={}
 P=dict(d)
 for s in P:
  if s==h:X(.00433,A,B)
  if s==w:X(.5,O,E)
  if s==z:X(.5,F,G)
  if s in [q,o]:X(.1295,H,E)
 l='The universe contains '
 for s in d:l+= str(d[s])+' '+s+'s'*(d[s]>1)+', ' if d[s]>0 else ''
 print(l[:-2]+'.')
print('Simulation ended after '+str(I/10)+' yoctoseconds.')

Experimente online!


1

F #, 1993 1908 bytes - 10% = 1718 bytes

open System
let r=new Random()
let p()=r.NextDouble()*100.0
type P=
 |A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z
let q="quark"
let n=dict[(A,"Higgs boson");(B,"Bottom "+q);(C,"Bottom anti"+q);(D,"Top "+q);(E,"Top anti"+q);(F,"W boson");(G,"Gluon");(H,"Tau lepton");(I,"Anti-tau lepton");(J,"Charm "+q);(K,"Charm anti"+q);(L,"Z boson");(M,"Photon");(N,"Muon");(O,"Antimuon");(P,"Antiquark");(Q,"Positron");(R,"Neutrino");(S,"Antineutrino");(T,"Electron");(U,"Down"+q);(V,"Down anti"+q);(W,"Strange "+q);(X,"Strange anti"+q);(Y,"Up "+q);(Z,"Up anti"+q);]
let c(u:P seq)=Option.isSome(Seq.tryFind(fun p->Seq.contains p [A;F;L;D])u)
let w()=
 if r.Next(2)=0 then
  let p=r.Next(3)
  if p=0 then[Q;R]elif p=1 then[O;R]else[I;R]
 else[F]
let t a=
 if p()<12.95 then
  let p=r.Next(3)
  if p=0 then[F;U]elif p=1 then[F;W]else[F;B]
 else[a]
let h()=
 if p()<0.0433 then
  let p=p()
  if p<64.8 then[B;C]elif p<78.9 then[F;F]elif p<87.72 then[G;G]elif p<94.76 then[H;I]elif p<98.03 then[J;K]elif p<99.62 then[L;L]elif p<99.843 then[M;M]elif p<99.954 then[L;M]elif p<99.9784 then[N;O]else[D;E]
 else[A]
let z()=
 if r.Next(2)=0 then
  let p=p()
  if p<20.6 then[R;S]elif p<24.0 then[T;Q]elif p<27.4 then[N;O]elif p<30.8 then[H;I]elif p<46.0 then[U;V]elif p<61.2 then[W;X]elif p<76.4 then[B;C]elif p<88.2 then[Y;Z]else[J;K]
 else[F]
let d u=List.map(fun p->if p=A then h()elif p=F then w()elif p=L then z()elif p=D||p=E then t p else[p])u|>List.concat 
let b h=List.init h (fun x->id A)
let o u=
 let e=List.countBy id u|>List.map(fun t->n.[fst t],snd t)|>List.map(fun t->
   if snd t>1 then(snd t,(fst t)+"s")else snd t,fst t)
 String.Join(", ",(List.map(fun x->(string(fst x))+" "+(snd x))e))|>printfn"The universe contains %s."
let [<EntryPoint>]m a=
 let mutable u=int a.[0]|>b
 let mutable t=0
 while c u do
  o u
  u<-d u
  t<-t+1
 o u
 (float t)/10.0|>printfn"Simulation ended after %f yoctoseconds."
 0

Experimente online!

Ungolfed, fica assim:

São muitas partículas ...

Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.