Os números de Bernoulli (especificamente, o segundo número de Bernoulli) são definidos pela seguinte definição recursiva:
Onde denota uma combinação .
Dado um número inteiro não negativo m
como entrada, imprima a representação decimal OU uma fração reduzida para o m
segundo número de Bernoulli. Se você produzir uma representação decimal, deverá ter pelo menos 6 casas decimais (dígitos após o ponto decimal) de precisão, e ela deve ser precisa quando arredondada para 6 casas decimais. Por exemplo, para m = 2
, 0.166666523
é aceitável porque arredonda para 0.166667
. 0.166666389
não é aceitável, porque arredonda para 0.166666
. Zeros à direita podem ser omitidos. Notação científica pode ser usada para representações decimais.
Aqui está a entrada e a saída esperada para m
até 60 inclusive, em notação científica arredondada para 6 casas decimais e como frações reduzidas:
0 -> 1.000000e+00 (1/1)
1 -> 5.000000e-01 (1/2)
2 -> 1.666667e-01 (1/6)
3 -> 0.000000e+00 (0/1)
4 -> -3.333333e-02 (-1/30)
5 -> 0.000000e+00 (0/1)
6 -> 2.380952e-02 (1/42)
7 -> 0.000000e+00 (0/1)
8 -> -3.333333e-02 (-1/30)
9 -> 0.000000e+00 (0/1)
10 -> 7.575758e-02 (5/66)
11 -> 0.000000e+00 (0/1)
12 -> -2.531136e-01 (-691/2730)
13 -> 0.000000e+00 (0/1)
14 -> 1.166667e+00 (7/6)
15 -> 0.000000e+00 (0/1)
16 -> -7.092157e+00 (-3617/510)
17 -> 0.000000e+00 (0/1)
18 -> 5.497118e+01 (43867/798)
19 -> 0.000000e+00 (0/1)
20 -> -5.291242e+02 (-174611/330)
21 -> 0.000000e+00 (0/1)
22 -> 6.192123e+03 (854513/138)
23 -> 0.000000e+00 (0/1)
24 -> -8.658025e+04 (-236364091/2730)
25 -> 0.000000e+00 (0/1)
26 -> 1.425517e+06 (8553103/6)
27 -> 0.000000e+00 (0/1)
28 -> -2.729823e+07 (-23749461029/870)
29 -> 0.000000e+00 (0/1)
30 -> 6.015809e+08 (8615841276005/14322)
31 -> 0.000000e+00 (0/1)
32 -> -1.511632e+10 (-7709321041217/510)
33 -> 0.000000e+00 (0/1)
34 -> 4.296146e+11 (2577687858367/6)
35 -> 0.000000e+00 (0/1)
36 -> -1.371166e+13 (-26315271553053477373/1919190)
37 -> 0.000000e+00 (0/1)
38 -> 4.883323e+14 (2929993913841559/6)
39 -> 0.000000e+00 (0/1)
40 -> -1.929658e+16 (-261082718496449122051/13530)
41 -> 0.000000e+00 (0/1)
42 -> 8.416930e+17 (1520097643918070802691/1806)
43 -> 0.000000e+00 (0/1)
44 -> -4.033807e+19 (-27833269579301024235023/690)
45 -> 0.000000e+00 (0/1)
46 -> 2.115075e+21 (596451111593912163277961/282)
47 -> 0.000000e+00 (0/1)
48 -> -1.208663e+23 (-5609403368997817686249127547/46410)
49 -> 0.000000e+00 (0/1)
50 -> 7.500867e+24 (495057205241079648212477525/66)
51 -> 0.000000e+00 (0/1)
52 -> -5.038778e+26 (-801165718135489957347924991853/1590)
53 -> 0.000000e+00 (0/1)
54 -> 3.652878e+28 (29149963634884862421418123812691/798)
55 -> 0.000000e+00 (0/1)
56 -> -2.849877e+30 (-2479392929313226753685415739663229/870)
57 -> 0.000000e+00 (0/1)
58 -> 2.386543e+32 (84483613348880041862046775994036021/354)
59 -> 0.000000e+00 (0/1)
60 -> -2.139995e+34 (-1215233140483755572040304994079820246041491/56786730)
Implementação de referência (em Python 3):
def factorial(n):
if n < 1:
return 1
else:
return n * factorial(n - 1)
def combination(m,k):
if k <= m:
return factorial(m)/(factorial(k) * factorial(m - k))
else:
return 0
def Bernoulli(m):
if m == 0:
return 1
else:
t = 0
for k in range(0, m):
t += combination(m, k) * Bernoulli(k) / (m - k + 1)
return 1 - t
Regras
- Isso é código-golfe , então o código mais curto em bytes ganha
- Você não pode usar nenhuma função, interna ou incluída em uma biblioteca externa, que calcule o tipo de números de Bernoulli ou os polinômios de Bernoulli.
- Sua resposta deve fornecer uma saída correta para todas as entradas até 60, inclusive.
Entre os melhores
O snippet de pilha na parte inferior desta postagem gera o cabeçalho das respostas a) como uma lista da solução mais curta por idioma eb) como um cabeçalho geral.
Para garantir que sua resposta seja exibida, inicie-a com um título, usando o seguinte modelo de remarcação:
## Language Name, N bytes
onde N
está o tamanho do seu envio. Se você melhorar sua pontuação, poderá manter as pontuações antigas no título, identificando-as. Por exemplo:
## Ruby, <s>104</s> <s>101</s> 96 bytes
Se você quiser incluir vários números no cabeçalho (por exemplo, porque sua pontuação é a soma de dois arquivos ou você deseja listar as penalidades do sinalizador de intérpretes separadamente), verifique se a pontuação real é o último número no cabeçalho:
## Perl, 43 + 2 (-p flag) = 45 bytes
Você também pode transformar o nome do idioma em um link que será exibido no snippet:
## [><>](http://esolangs.org/wiki/Fish), 121 bytes