Visualizando Palavras


20

Dada uma palavra que consiste apenas em letras minúsculas, faça o seguinte:

  1. Para cada letra, obtenha a fatoração primária de sua posição no alfabeto.
  2. Para cada fator primo, p , desenhe um diamante de comprimento lateral p e cole a letra no meio do diamante.
  3. O maior diamante está no meio, os diamantes menores subsequentes (do maior para o menor) alternam entre ir para o fundo ou para o topo.

Nota: Para a letra a, use o comprimento lateral de 1.

Exemplo: gato

  • c : 3 = 3
  • a : 1 = 1
  • t : 20 = 5 * 2 * 2

O diagrama:

                 .
                . .
               . t .
                . .
                 .
                 .
                . .
   .           .   .
  . .         .     .
 .   .   .   .       .
.  c  . .a. .    t    .
 .   .   .   .       .
  . .         .     .
   .           .   .
                . .
                 .
                 .
                . .
               . t .
                . .
                 .

Exemplo: cachorro

  • d : 4 = 2 * 2
  • o : 15 = 5 * 3
  • g : 7 = 7

Diagrama:

                         .
                        . .
           .           .   .
          . .         .     .
         .   .       .       .
  .     .     .     .         .
 . .   .       .   .           .
. d . .    o    . .      g      .
 . .   .       .   .           .
  .     .     .     .         .
  .      .   .       .       .
 . .      . .         .     .
. d .      .           .   .
 . .       .            . .
  .       . .            .
         .   .
        .  o  .
         .   .
          . .
           .

Bônus de -20% se o seu programa gerar um arquivo de texto chamado "[your-word] .txt". Em seguida, insira uma palavra real (ou frase, em minúscula sem espaços), com pelo menos 20 letras e ninguém mais tenha escolhido ainda, e cole a saída entre a <pre>e a </pre>na sua resposta.


Seus exemplos parecem usar diamantes do tamanho do p + 1 pontos ...
Jaykul

3
@ Jaykul Boa pergunta. O comprimento lateral é determinado pelo número de espaços entre os pontos.
geokavel

Respostas:


8

Matlab, 466393 - 20% = 314,4 bytes

Golfed: (poderia salvar mais alguns bytes, também por causa da ajuda do @ AndreasDeak!)

function q(W);function z=g(l,c);[x,y]=ndgrid(abs(-l:l));z=0*y;z(~x&~y)=c;z(x+y==l)=46;end;w=W-96;n=numel(w);R=n*26;C=1;A=zeros(2*R);for k=1:n;f=sort(factor(w(k)));C=C+max(f)+1;d=-1;r=R;for F=fliplr(f);v=-F:F;while norm(A(r+v,v+C));r=r+d;end;A(r+v,v+C)=g(F,W(k));d=-d;end;C=C+max(f);end;A=A(find(sum(A,2)),find(sum(A)));f=fopen([W,'.txt'],'w');for k=1:size(A,1);fprintf(f,[A(k,:),'\n']);end;end

Também deve funcionar no Octave (código aberto), mas apenas com muitos avisos. Use esta versão se quiser experimentá-lo em oitava (saída para o console, em vez de arquivo):

function q(W);function z=g(l,c);[x,y]=ndgrid(abs(-l:l));z=0*y;z(~x&~y)=c;z(x+y==l)=46;end;w=W-96;n=numel(w);R=n*26;C=1;A=zeros(2*R);for k=1:n;f=sort(factor(w(k)));C=C+max(f)+1;d=-1;r=R;for F=fliplr(f);v=-F:F;while norm(A(r+v,v+C));r=r+d;end;A(r+v,v+C)=g(F,W(k));d=-d;end;C=C+max(f);end;A=A(find(sum(A,2)),find(sum(A)));disp([A,'']);end

Ungolfed e explicou:

function q(W)
function z=g(l,c) %get a square matrix for one prime factor
[x,y]=ndgrid(abs(-l:l));
z=0*y;
z(~x&~y)=c;    %character in the middle
z(x+y==l)=46;  %dots
end;
w=W-96;                %convert word to the corresponding indices                  
n=numel(w);
R=n*26;                %keeps track of the main row 
C=1;                   %keeps track of the current column
A=zeros(2*R);          %make a 'canvas' matrix that is way to big 
for k=1:n;
    f=sort(factor(w(k)));          %get all the factors of current character
    C=C+max(f)+1;                  %update current column
    d=-1;                          %search direction
    r=R;
    for F=fliplr(f);              
        v=-F:F;
        while norm(A(r+v,v+C));    %go up or down until there is enough space to write the prime factor
            r=r+d;
        end;
        A(r+v,v+C)=g(F,W(k));     %insert all the prime factors
        d=-d;
    end;
    C=C+max(f);
end;
A=A(find(sum(A,2)),find(sum(A))); %truncate all the unneccessary padding
f=fopen([W,'.txt'],'w');     %write to file
for k=1:size(A,1);
    fprintf(f,[A(k,:),'\n']);
end;

end

A palavra solicitada: (E aqui como um arquivo: (diminui muito o zoom): supercalifragilisticexpialidocious.txt )

                       . . .                   
                      . . . . . .                  
                     . . . . . .                 
                    . . . . . .                
                   . . . . . .               
                  . . . . . .              
                 . . . . . .             
                . . . . . .            
               . . . . . .           
              . . . . . . .          
             . . . . . . . .         
            . . . . . . . . . t. . . . .        
           . . . . . . . . . . . . . . . . . . . . . . . . .       
          . . . . . . . r. . eu . . r. . . . eu . . . . . x. . . . eu . . . . .      
         . . . . . p. . . . . . . . . . . . . . . . . . . p. . . . . . . . .     
        . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    
       . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
    . s .. u .. p .. e .. r .. c .. a .. l .. eu .. f .. r .. a .. g .. eu .. l .. eu ... s. .. t .. eu .. c .. e .. x .. p .. eu .. a .. eu .. eu .. d .. o .. c .. eu .. o .. u .. s .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
       . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   
        . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    
         . . . . . p. . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. . . . . . . . d. . . . . . . . .     
          . . . . . . . . . eu . . . . f. . . . . . . . eu . . . . . . . . . x. . . . . . eu . . . . . . . . . . . . .      
           . . . . . r. . . . Eu . . . . r. . . Eu . . . . Eu . . . . . . Eu . . . . . Eu . . . . Eu . . . . . Eu . . . . . .       
            . . . . . . . . . . . . . . . . . . . . t. . . . . . . . . . . . . . . . . . .        
             . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . o. . . . o. . . . .         
              . . . . . p. . . . . . . . . . . . . p. . . . . . . . . . . .          
               . . . você . . . . . . x. . . . . . . . você . . .           
                . . . . . . . . . . . . . . . .            
                 . . . . . . . . . . .             
                  . . . . . . . .              
                   . . . . . .               
                    . . . . . .                
                     . . . . . .                 
                      . . . . . .                  
                       . . .                   

Não seria A=A(find(sum(A,2)),find(sum(A)));suficiente para remover o preenchimento em uma etapa?
Andras Deak

Na verdade, obtive resultados perfeitos quando colei o texto de saída entre duas <pre>tags. Por que você não tenta isso!
precisa

Tem certeza de que precisa sort(factor())? factorParece que o MATLAB já está classificado. E você pode definir uma variável para max(f), pois parece estar usando a mesma quantidade duas vezes.
Andras Deak

1
@geokavel Eu acredito que você está vendo o contrário :) De [a Bíblia] (pt.wikipedia.org): MATLAB -> "Lançamento inicial - 1984", GNU Octave -> Lançamento inicial - 1988 ". Como Ou o Mathworks permite que seus produtos comerciais sejam copiados com detalhes tão pequenos? Ou se você apenas quis dizer por que ainda é lucrativo: tenho certeza de que as caixas de ferramentas MATLAB disponíveis e os recursos sobrecarregam o Octave (embora a sintaxe do Octave às vezes seja mais rica! Para não mencionar a velocidade (acho).
Andras Deak

1
@geokavel É como AndrasDeak disse: O Octave é um clone do Matlab, mas infelizmente não é perfeito, pois os desenvolvedores também tentaram melhorar o idioma. Aqui uma versão ligeiramente modificada, que também funciona no interpretador on-line: goo.gl/Jk7mpV
flawr

6

Função , não competitiva, 29199 bytes

Eu gostei desse desafio porque destacava a falta dolorida de algumas funções muito úteis da biblioteca. Incluírei todas essas funções aqui (e na contagem de bytes) porque as escrevi após o lançamento deste desafio.

Fonte completa em um único arquivo

Explicação

Como sempre, obtenha uma melhor renderização executando javascript:(function(){$('pre,code').css({lineHeight:5/4});})()no console do navegador.

ɹ Reverso

Como você pode ou não saber, o Funciton vem com uma biblioteca cheia de funções para listas , que são valores codificados em um único número inteiro humongoso, além de uma biblioteca separada para sequências avaliadas preguiçosamente , que usam expressões lambda (funções anônimas) em para ser preguiçoso. Claro que também há uma biblioteca para funções de manipulação de strings.

Para esse desafio, eu precisava de uma função para reverter uma string e uma função para reverter uma sequência avaliada preguiçosamente. Surpreendentemente, eu só tinha um para listas - exatamente o que eu não precisava. Então, aqui estão as funções reversas para sequências preguiçosas ( ɹ) e para strings ( ):

              ╓───╖             ╔════╗ ┌────╖        ╓───╖
              ║ ɹ ║             ║ 21 ╟─┤ >> ╟──┐     ║ ⇄ ║
              ╙─┬─╜             ╚════╝ ╘═╤══╝  │     ╙─┬─╜      ┌──┐
          ┌─────┴─────┐                ┌─┴─╖   ├───────┴────────┤  │
        ┌─┴─╖ ┌───╖   │                │ ⇄ ║   │   ╔════╗ ┌───╖ │  │
      ┌─┤   ╟─┤ ɹ ╟─┐ │                ╘═╤═╝   │   ║ −1 ╟─┤ ≠ ╟─┴┐ │
      │ └─┬─╜ ╘═══╝ │ │                ┌─┴─╖ ┌─┴─╖ ╚════╝ ╘═╤═╝  │ │
      │   │   ┌───╖ │ │                │ ‼ ╟─┤ ? ╟──────────┤    │ │
      │   └───┤ ʬ ╟─┘ │                ╘═╤═╝ ╘═╤═╝  ╔═══╗ ┌─┴─╖  │ │
      │       ╘═╤═╝   │                ┌─┴─╖ ╔═══╗  ║ 0 ╟─┤ ≠ ╟──┘ │
      │ ╔═══╗ ┌─┴─╖   │              ┌─┤ ʃ ╟─╢ 1 ║  ╚═╤═╝ ╘═══╝    │
      └─╢ 0 ╟─┤ ? ╟───┘              │ ╘═╤═╝ ╚═══╝    │            │
        ╚═══╝ ╘═╤═╝                  │   └────────────┘            │
                │                    └─────────────────────────────┘

As sequências preguiçosas usadas ʬ, que são "anexam um elemento ao final de uma sequência preguiçosa". A string usada ʃ(substring) e (concatenada).

Primes

Embora eu pudesse ter feito a fatoração primária apenas tentando dividir n por todos os fatores em ordem, decidi que queria uma função de biblioteca que gere números primos. A função a seguir pega um número inteiro n e implementa a Peneira de Eratóstenes para gerar todos os números primos até n . Isso é feito como uma sequência lenta, gerando apenas o número de primos que você avaliar.

                                       ╓───╖
                                       ║ Ṗ ║
                                 ╔═══╗ ╙─┬─╜
                                 ║ 0 ║ ┌─┴─╖
                                 ╚═╤═╝ │ ♭ ║
                          ╔═══╗ ┌──┴─╖ ╘═╤═╝
                          ║ 2 ╟─┤ Ṗp ╟───┘
                          ╚═══╝ ╘══╤═╝
    ┌──────────────┐               │
    │              ├─────────────────────────────────────────┐
    │            ┌─┴─╖                                       │
    │          ┌─┤ · ╟────────────────────────────┐   ╓┬───╖ │
    │          │ ╘═╤═╝                            ├───╫┘Ṗp ╟─┤
    │          │   │           ╔═══╗ ┌────╖     ┌─┴─╖ ╙─┬──╜ │
    │          │   │           ║ 1 ╟─┤ >> ╟─────┤ · ╟───┴─┐  │
    │          │   │  ┌───╖    ╚═══╝ ╘══╤═╝     ╘═╤═╝     │  │
    │          │ ┌─┴──┤ ♯ ╟─────┐    ┌──┴─╖ ┌───╖ │       │  │
    │          │ │    ╘═══╝ ┌─┐ │ ┌──┤ Ṗp ╟─┤ ♭ ╟─┴─┐     │  │
    │          │ │          ├─┘ └─┤  ╘══╤═╝ ╘═══╝ ┌─┘     │  │
    │          │ │        ╔═╧═╕ ┌─┴─╖ ┌─┴─╖     ┌─┴─╖     │  │
    │          │ └────────╢   ├─┤ · ╟─┤ ? ╟─────┤ · ╟─┐   │  │
    │          │ ┌───╖    ╚═╤═╛ ╘═╤═╝ ╘═╤═╝     ╘═╤═╝ │   │  │
    │        ┌─┴─┤ ♭ ╟─┐ ┌──┴─╖   │   ┌─┴─╖       │   │   │  │
    │        │   ╘═══╝ └─┤ Ṗp ╟───┘ ┌─┤ ? ╟───────┘   │   │  │
    │ ┌───╖  │  ╔════╗   ╘══╤═╝     │ ╘═╤═╝           │   │  │
  ┌─┴─┤ ÷ ╟──┘  ║ −1 ║   ┌──┴─╖   ╔═╧═╗ │            ┌┴┐  │  │
  │   ╘═╤═╝     ╚══╤═╝ ┌─┤ >> ╟─┐ ║ 0 ║              └┬┘  │  │
  │   ┌─┴─╖ ┌────╖ │   │ ╘════╝ │ ╚═══╝               │   │  │
  │   │ × ╟─┤ << ╟─┘ ┌─┴─┐    ╔═╧═╗                   │   │  │
  │   ╘═╤═╝ ╘══╤═╝  ┌┴┐ ┌┴┐   ║ 1 ╟───────────────────┴─┐ │  │
  └─────┘     ┌┴┐   └┬┘ └┬┘   ╚═══╝                     ├─┘  │
              └┬┘    │   └──────────────────────────────┘    │
             ┌─┴─╖ ┌─┴──╖                                    │
             │ ÷ ╟─┤ << ╟─┐                                  │
             ╘═╤═╝ ╘════╝ ├──────────────────────────────────┘
              ┌┴┐         │
              └┬┘         │
      ╔════╗ ┌─┴──╖       │
      ║ −1 ╟─┤ << ╟───────┘
      ╚════╝ ╘════╝

A função auxiliar,, Ṗpassume:

  • Um contador em execução que continua diminuindo até atingir 0.

  • A peneira, que possui um bit definido para cada número que já é conhecido como não primo. Inicialmente, o bit menos significativo representa o número 2, mas mudamos esse direito a cada iteração.

  • Um número n que indica qual número é representado pelo bit mais baixo da peneira; isso é incrementado a cada iteração.

A cada iteração, se o bit mais baixo da peneira for 0, encontramos um n primo . Em seguida, usamos a fórmula que eu já descrevi em Preencher as linhas, colunas e diagonais de uma grade NxN para definir cada n- ésimo bit na peneira antes de passar para a próxima iteração.

Fatoração primária

                             ╓───╖
                             ║ Ḟ ║
                             ╙─┬─╜
                       ┌───────┴──────┐
                       │ ┌───╖ ┌────╖ │
                       └─┤ Ṗ ╟─┤ Ḟp ╟─┘
                         ╘═══╝ ╘═╤══╝
                                 │
               ┌────────────────────────────────────────────┐
               │                                     ╓┬───╖ │
       ┌───────┴─┐     ┌───────────────────────┐   ┌─╫┘Ḟp ╟─┘
       │ ╔═══╗ ┌─┴─╖ ┌─┴─╖ ┌───┐ ┌────╖      ┌─┴─╖ │ ╙────╜
       │ ║ 0 ╟─┤   ╟─┤ · ╟─┘┌┐ └─┤ Ḟp ╟──┐ ┌─┤ · ╟─┴──┐
       │ ╚═══╝ └─┬─╜ ╘═╤═╝  └┤   ╘═╤══╝  ├─┘ ╘═╤═╝    │
       │       ┌─┴─┐ ┌─┴─╖ ╔═╧═╕ ┌─┴─╖ ┌─┴─╖ ┌─┴──╖ ┌─┴─╖
       │       │   └─┤ · ╟─╢   ├─┤ ? ╟─┤ · ╟─┤ ÷% ╟─┤ · ╟─┐
       │       │     ╘═╤═╝ ╚═╤═╛ ╘═╤═╝ ╘═╤═╝ ╘═╤══╝ ╘═╤═╝ │
       │       │    ┌──┴─╖   │   ┌─┴─╖ ┌─┴─╖   └──────┘   │
       │       │    │ Ḟp ╟───┘ ┌─┤ ? ╟─┤ ≤ ║              │
       │     ┌─┴─╖  ╘══╤═╝     │ ╘═╤═╝ ╘═╤═╝              │
       └─────┤ · ╟─────┘     ╔═╧═╗ │   ╔═╧═╗              │
             ╘═╤═╝           ║ 0 ║     ║ 2 ║              │
               │             ╚═══╝     ╚═══╝              │
               └──────────────────────────────────────────┘

Isso é bastante direto. Basta percorrer os primos até n e ver quais dividem n . Se alguém dividir n , lembre-se de continuar com o mesmo primo, para que o retornemos várias vezes se ele dividir n várias vezes. Isso retorna a sequência vazia para qualquer número menor que 2.

Gere um diamante

Esta função gera um único diamante, dado um caractere e um raio. Ele usa apenas o personagem para colocá-lo no centro do diamante.

                                   ┌───╖
             ┌─────────────────────┤ ♯ ╟───────────┬─────────┐
             │ ┌───╖ ╔═══╗   ┌───┐ ╘═══╝           │         │
             └─┤ ♫ ╟─╢ 0 ║   │ ┌─┴─╖               │         │
               ╘═╤═╝ ╚═══╝   │ │ ʭ ╟───┐           │         │
               ┌─┴─╖   ┌─────┘ ╘═╤═╝   │           │         │
               │ ɱ ╟───┤ ┌───╖ ┌─┴─╖ ╔═══╗   ╓───╖ │         │
               ╘═╤═╝   └─┤ ɹ ╟─┤ ʓ ╟─╢ 1 ║ ┌─╢ ◇ ╟─┤         │
                 │ ╔═══╗ ╘═══╝ ╘═══╝ ╚═══╝ │ ╙───╜ │         │
                 │ ║ 0 ║                   │     ┌─┴─╖       │
                 │ ╚═╤═╝                   │     │ ♭ ║       │
               ╔═╧═╕ │   ╔════╗            │     ╘═╤═╝       │
           ┌───╢   ├─┘ ┌─╢ 21 ║          ┌─┴─╖   ┌─┴─╖     ┌─┴─┐
           │   ╚═╤═╛   │ ╚════╝ ┌────────┤ · ╟───┤ · ╟─┐ ┌─┴─╖ │
           │   ┌─┴─╖ ┌─┴──╖ ┌───┘        ╘═╤═╝   ╘═╤═╝ ├─┤ = ║ │
           │ ┌─┤ ‼ ╟─┤ >> ║ │              │     ┌─┴─╖ │ ╘═╤═╝ │
           │ │ ╘═══╝ ╘═╤══╝ │              │   ┌─┤ ? ╟─┘   │   │
           │ │   ┌───╖ │ ┌──┘              │   │ ╘═╤═╝     │   │
           │ └─┬─┤ ⇄ ╟─┘ │     ┌─────┐     │   │ ┌─┴─╖     │   │
           │   │ ╘═══╝ ┌─┴─╖ ┌─┴─╖ ┌─┴─╖ ┌─┴─╖ └─┤ · ╟──┬──┘   │
           │   └───────┤ · ╟─┤ ? ╟─┤ · ╟─┤ ‼ ║   ╘═╤═╝  │      │
           │           ╘═╤═╝ ╘═╤═╝ ╘═╤═╝ ╘═╤═╝   ┌─┴─╖  │      │
           │             └─────┘     └─┬───┘ ┌───┤ … ║  │      │
           │               ┌─────┐     │     │   ╘═╤═╝  │      │
           │            ╔══╧═╗ ┌─┴─╖ ┌─┴─╖ ┌─┴─╖ ╔═╧══╗ │      │
           │            ║ 32 ║ │ … ╟─┤ ‼ ╟─┤ ‼ ║ ║ 32 ║ │      │
           │            ╚════╝ ╘═╤═╝ ╘═══╝ ╘═╤═╝ ╚════╝ │      │
           │                   ┌─┴─╖       ╔═╧══╗       │      │
           │               ┌───┤ − ╟───┬─┐ ║ 46 ║       │      │
           │             ┌─┴─╖ ╘═══╝   │ │ ╚════╝       │      │
           └─────────────┤ · ╟─────────┘ └──────────────┘      │
                         ╘═╤═╝                                 │
                           └───────────────────────────────────┘

Isso faz uso pesado de sequências preguiçosas. Veja como funciona:

  • Gere a sequência de números inteiros de 0 a r (inclusive).

  • Para cada um desses inteiros α , gere uma sequência composta por espaços ( r - α ) ( ), seguidos por um ponto, seguidos por espaços α - a menos que α = r , nesse caso gere um espaço a menos e anexe a letra. Agora temos o quarto superior esquerdo do diamante.

  • Para cada uma dessas cadeias, acrescente outra cópia da mesma cadeia, mas com os caracteres invertidos ( ) e, em seguida, o primeiro caractere removido ( >> 21). Agora temos a metade superior do diamante.

  • Pegue esta sequência e acrescente a mesma sequência, mas invertida ( ɹ) e com o primeiro elemento removido ( ʓ). Agora temos o diamante inteiro.

Agora temos as cordas que compõem o diamante, mas precisamos de um pouco mais de informação. Precisamos saber onde está o meio vertical do diamante. Inicialmente, é claro que r , mas depois que anexamos outros diamantes na parte superior e inferior, precisaremos acompanhar a posição do diamante "médio" para poder alinhar verticalmente as outras pilhas de diamantes corretamente . O mesmo vale para a extensão horizontal do diamante (é necessário isso ao anexar diamantes na parte superior e inferior). Eu também decidi acompanhar a carta; Eu preciso disso porque, caso contrário, a função (que abordaremos na próxima seção) teria que ter quatro parâmetros, mas o Funciton permite apenas três.

                             ┌─────────────────┐
                             │  ╓───╖          │
                             ├──╢ ◆ ╟──┐       │
                             │  ╙───╜  │       │
                             │   ┌─────┴───┐   │
                           ┌─┴─╖ │ ┌───╖ ┌─┴─╖ │
                         ┌─┤ · ╟─┴─┤ › ╟─┤ › ║ │
                         │ ╘═╤═╝   ╘═╤═╝ ╘═╤═╝ │
                         │ ┌─┴─╖     │   ┌─┴─╖ │
                         │ │ ◇ ╟─────────┤ › ╟─┘
                         │ ╘═╤═╝         ╘═══╝
                         └───┘

Usamos a API da lista ( adiciona elementos à frente de uma lista) para criar uma estrutura contendo [ x , y , c , q ], em que x é a coordenada x do centro horizontal do diamante, y é o y- coordenada da linha de base, c é a letra e q é a sequência lenta de seqüências de caracteres. Essa estrutura será usada para conter todos os estágios intermediários a partir de agora.

Pend Anexe diamantes verticalmente

Essa função utiliza uma pilha de diamantes existente, um raio e um booleano indicando se o novo diamante deve ser adicionado ao topo (verdadeiro) ou ao fundo (falso).

                 ┌─────────────────────────────────────────────────┐
               ┌─┴─╖         ┌───────────────────────────┐ ┌───╖ ┌─┴─╖
           ┌───┤ · ╟─────────┘ ╔═══╗ ┌───────────────┐   ├─┤ ‹ ╟─┤ ‹ ║
           │   ╘═╤═╝           ║ 1 ║ │ ╓───╖         │   │ ╘═╤═╝ ╘═╤═╝
           │     │             ╚═╤═╝ └─╢ ⬗ ╟─┐       │ ┌─┴─╖ │   ┌─┴─╖
           │     │ ┌───╖ ┌───╖ ┌─┴──╖  ╙─┬─╜ │       └─┤ · ╟─┘ ┌─┤ ‹ ╟─┐
           │   ┌─┴─┤ + ╟─┤ ♯ ╟─┤ << ║    │   │         ╘═╤═╝   │ ╘═══╝ │
           │   │   ╘═╤═╝ ╘═══╝ ╘═╤══╝    │ ┌─┴─╖         │     │       │
           │   │   ┌─┴─╖         └───────┴─┤ · ╟───┐   ┌─┴─╖   │       │
           │   └───┤ ? ╟─┐                 ╘═╤═╝ ┌─┴───┤ · ╟─┐ │       │
           │       ╘═╤═╝ ├───────────────────┘   │     ╘═╤═╝ │ │       │
           │ ┌───╖ ┌─┴─╖ │               ┌─────┐ │ ┌───╖ │   │ │       │
           └─┤ › ╟─┤ › ║ │       ┌───╖ ┌─┴─╖   │ └─┤ − ╟─┘   │ │       │
             ╘═╤═╝ ╘═╤═╝ │     ┌─┤ ‼ ╟─┤ ‼ ║   │   ╘═╤═╝     │ │       │
               │   ┌─┴─╖ │     │ ╘═╤═╝ ╘═╤═╝ ┌─┴─╖ ┌─┴─╖     │ │       │
               ┌───┤ · ╟─┘     │ ┌─┴─╖   ├───┤ · ╟─┤ … ║     │ │       │
     ┌───┐     │   ╘═╤═╝       └─┤ · ╟───┘   ╘═╤═╝ ╘═╤═╝     │ │       │
     │ ┌─┴─╖ ┌─┴─╖ ┌─┴─╖         ╘═╤═╝         │  ╔══╧═╗     │ │       │
     │ │ ʭ ╟─┤ ? ╟─┤ › ╟─┐ ╔═══╗ ╔═╧═╕         │  ║ 32 ║     │ │       │
     │ ╘═╤═╝ ╘═╤═╝ ╘═══╝ │ ║ 0 ╟─╢   ├─────────┘  ╚════╝     │ │       │
     │ ┌─┘   ┌─┴─╖       │ ╚═══╝ ╚═╤═╛                       │ │       │
     │ └─┬───┤ ʭ ╟─┐   ┌─┴─╖     ┌─┴─╖                       │ │       │
     │ ┌─┴─╖ ╘═══╝ ├───┤ · ╟─────┤ ɱ ║                       │ │       │
     └─┤ · ╟───────┘   ╘═╤═╝     ╘═╤═╝                       │ │       │
       ╘═╤═╝             │       ┌─┴─╖                       │ │       │
         │               └─────┬─┤ ◇ ╟───────────────────────┘ │       │
         │                     │ ╘═══╝                       ┌─┴─╖     │
         │                     └─────────────────────────────┤ · ╟─────┘
         │                                                   ╘═╤═╝
         └─────────────────────────────────────────────────────┘

Isso também é bastante direto; use para descompactar a estrutura; use para gerar o novo diamante; use ɱ(map) para adicionar espaços no início e no final de cada string no novo diamante, para que todos tenham a mesma largura; acrescente ( ʭ) as novas strings no antigo (se inferior) ou o antigo no novo (se superior); e finalmente use para construir a estrutura que contém todos os novos valores. Em particular, se estamos anexando ao fundo, y não muda, mas se estamos anexando ao topo, y deve aumentar em ♯(r << 1)( r é o raio do novo diamante).

Concatene pilhas horizontalmente

Esta é a maior função de todas elas. Não vou negar que foi bastante complicado acertar isso. Ele pega duas pilhas e as concatena horizontalmente, respeitando o alinhamento vertical correto.

                           ┌──────────────────────────────────┬───────────────────────┐
                           │     ┌──────────────────┐       ┌─┴─╖                   ┌─┴─╖
                           │     │    ┌───────────┐ └───────┤ · ╟───┬───────────────┤ · ╟─────────────┐
                           │     │  ┌─┴─╖         │         ╘═╤═╝   │               ╘═╤═╝             │
                           │     │  │ ‹ ╟───┐     │         ┌─┴─╖ ┌─┴─╖               │               │
                           │     │  ╘═╤═╝ ┌─┴─╖   └─────────┤ · ╟─┤ · ╟─────────┐     │               │
                           │     │    ├─┐ │ ‹ ╟───┐         ╘═╤═╝ ╘═╤═╝         │     │               │
                           │     │    └─┘ ╘═╤═╝ ┌─┴─╖ ╓───╖ ┌─┴─╖   │           │     │               │
                           │     │          │   │ ‹ ╟─╢ ❖ ╟─┤ ‹ ║   │           │     │               │
                           │     │          │   ╘═╤═╝ ╙───╜ ╘═╤═╝ ┌─┴─╖ ┌─┐     │     │               │
                           │     │          │     │           └───┤ ‹ ║ └─┤     │     │               │
                           │     │          │     │               ╘═╤═╝ ┌─┴─╖   │     │               │
                           │     │          │     │                 └───┤ ‹ ║   │     │               │
                           │     │          │     └─────────────────┐   ╘═╤═╝   │     │               │
                           │     │          │                     ┌─┴─╖ ┌─┴─╖ ┌─┴─╖ ┌─┴─╖             │
                           │     │          │      ┌──────────────┤ · ╟─┤ · ╟─┤ · ╟─┤ · ╟──────┐      │
                           │     │          └──────┤              ╘═╤═╝ ╘═╤═╝ ╘═╤═╝ ╘═╤═╝      │      │
                           │   ┌─┴─╖             ┌─┴─╖            ┌─┴─╖   │     │     │        │      │
                           │ ┌─┤ · ╟─────────────┤ · ╟────────────┤ · ╟───┘     │     │        │      │
                           │ │ ╘═╤═╝             ╘═╤═╝            ╘═╤═╝         │     │        │      │
                           │ │   │                 │         ┌────╖ │         ┌─┴─╖   │        │      │
       ╔═══╗ ┌────╖        │ │   │                 │       ┌─┤ << ╟─┴─────────┤ · ╟─┐ │        │      │
       ║ 1 ╟─┤ << ╟────────┘ │   │                 │       │ ╘═╤══╝           ╘═╤═╝ │ │        │      │
       ╚═══╝ ╘═╤══╝ ╔════╗   │   │               ┌─┴─╖     │ ┌─┴─╖              │   │ │     ┌──┴──┐   │
             ┌─┴─╖  ║ 32 ╟─┐ │   │ ┌─────────────┤ · ╟───┐ │ │ ♯ ║              │   │ │   ┌─┴─╖ ┌─┴─╖ │
             │ ♯ ║  ╚════╝ │ │   └─┤ ┌───╖       ╘═╤═╝   │ │ ╘═╤═╝ ┌───╖ ╔════╗ │   │ │ ┌─┤ ? ╟─┤ < ║ │
             ╘═╤═╝   ┌───╖ │ │     └─┤ − ╟─────────┴─┐   │ │   └───┤ … ╟─╢ 32 ║ │   │ │ │ ╘═╤═╝ ╘═╤═╝ │
               └─────┤ … ╟─┘ │       ╘═╤═╝         ┌─┴─╖ │ └───┐   ╘═╤═╝ ╚════╝ │   │ │ │ ┌─┴─╖   ├───┘
                     ╘═╤═╝   │ ┌───╖ ┌─┴─╖ ┌───────┤ · ╟─┴─┐ ╔═╧═╗ ┌─┴─╖ ┌──────┘   │ │ └─┤ · ╟───┘
                       │   ┌─┴─┤ ʭ ╟─┤ ȶ ║ │ ┌───╖ ╘═╤═╝   │ ║ 1 ║ │ ⁞ ║ │ ┌────────┘ │   ╘═╤═╝
                     ┌─┴─╖ │   ╘═╤═╝ ╘═╤═╝ └─┤ > ╟───┴─┐   │ ╚═══╝ ╘═╤═╝ │ │   ┌──────┘     └────┐
                     │ ⁞ ║ │   ┌─┴─╖ ┌─┴─╖   ╘═╤═╝     │ ┌─┴─╖ ┌───╖ │   │ │ ┌─┴─╖ ┌───╖ ┌───╖ ┌─┴─╖
                     ╘═╤═╝ └───┤ ? ╟─┤ · ╟─────┴─┐     │ │ − ╟─┤ ȶ ╟─┴─┐ │ │ │ + ╟─┤ ♯ ╟─┤ › ╟─┤ › ║
                     ┌─┴─╖     ╘═╤═╝ ╘═╤═╝       │     │ ╘═╤═╝ ╘═╤═╝   │ │ │ ╘═╤═╝ ╘═══╝ ╘═╤═╝ ╘═╤═╝
┌────────────────────┤ · ╟───────┴───┐ └─┐     ┌─┴─╖   └───┘   ┌─┴─╖   │ │ └───┘           │     │
│                    ╘═╤═╝         ┌─┴─╖ │   ┌─┤ · ╟───────────┤ · ╟───┘ │                       │
│ ┌────────────────┐   │   ┌───────┤ · ╟─┘   │ ╘═╤═╝           ╘═╤═╝     │                       │
│ │ ╔════╗ ┌───╖ ┌─┴─╖ └───┤ ┌───╖ ╘═╤═╝     │   │               │     ┌─┴───┐                   │
│ │ ║ 32 ╟─┤ ‼ ╟─┤ · ╟───┐ └─┤ ʭ ╟───┘       │   │             ┌─┴─╖ ┌─┴─╖ ┌─┴─╖                 │
│ │ ╚════╝ ╘═╤═╝ ╘═╤═╝   │   ╘═╤═╝     ┌─────┘   │             │ ʭ ╟─┤ · ╟─┤ ? ╟─┐               │
│ │        ┌─┴─╖ ╔═╧═╕ ╔═╧═╕ ┌─┴─╖   ┌─┴─╖       │             ╘═╤═╝ ╘═╤═╝ ╘═╤═╝ │               │
│ │        │ ‼ ╟─╢   ├─╢   ├─┤ ʑ ╟───┤ ʭ ║     ┌─┴─╖             └─────┘     │   │               │
│ │        ╘═╤═╝ ╚═╤═╛ ╚═╤═╛ ╘═╤═╝   ╘═╤═╝ ┌───┤ · ╟─────────────────────────┘   │               │
│ └──────────┘     │   ╔═╧═╗   │       ├───┘   ╘═╤═╝                             │               │
│                  └───╢ 0 ║ ┌─┴─╖   ┌─┴─╖       └───────────────────────────────┘             ┌─┴─╖ ╔═══╗
│                      ╚═══╝ │ ȶ ╟───┤ · ╟─────────────────────────────────────────────────────┤ › ╟─╢ 0 ║
│                            ╘═╤═╝   ╘═╤═╝                                                     ╘═══╝ ╚═══╝
│                            ┌─┴─╖   ┌─┴─╖
│                      ┌─────┤ ? ╟─┐ │ ɕ ║
│                    ┌─┴─╖   ╘═╤═╝ │ ╘═╤═╝
│            ┌───╖ ┌─┤ < ╟───┬─┘   │   │
└────────────┤ ɕ ╟─┤ ╘═══╝ ┌─┴─╖   │   │
             ╘═══╝ └───────┤ · ╟───┘   │
                           ╘═╤═╝       │
                             └─────────┘

Aqui está como isso funciona.

  • Primeiro, para cada pilha, gere uma sequência infinita ( ) de cadeias, cada uma contendo espaços ( ) de acordo com a largura dessa pilha.

  • Os valores y das pilhas nos dizem qual deles precisa "descer" e quanto. Anexe a sequência espacial apropriada, truncada ( ȶ) no comprimento certo ( y1 - y2 ou y2 - y1, conforme apropriado).

  • Agora determine o comprimento de cada uma das seqüências de strings ( ɕ), o que nos indica sua altura. Descubra qual é o mais alto.

  • Anexe as seqüências de espaço infinito às duas pilhas.

  • Use zip ( ʑ) para juntá-los. Para cada par de cadeias, concatene-as ( ) junto com um espaço extra no meio.

  • Em seguida, use ȶpara truncar o resultado disso para a altura mais alta. Ao fazer isso tarde, não precisamos nos preocupar com qual deles precisa do preenchimento.

Por fim, gere a estrutura novamente. Nesse ponto, não precisamos mais do caractere nos diamantes, portanto, definimos como 0. O valor x é apenas somado e incrementado (para que a largura da pilha ainda possa ser calculada como ♯(x << 1)). O valor y é definido como o mais alto dos dois.

iterar caracteres em uma string

Esta é outra função útil que adicionarei à biblioteca. Dada uma sequência, ela fornece uma sequência lenta que contém cada código de caractere.

                                        ╓───╖
                                        ║ ↯ ║
                                        ╙─┬─╜
                           ┌──────────────┴────────────────┐
                           │      ┌─┐          ╔═══╗ ┌───╖ │
                           │      └─┤     ┌────╢ 0 ╟─┤ ≠ ╟─┴─┐
                    ┌──────┴─┐ ┌┐ ╔═╧═╕ ┌─┴─╖  ╚═══╝ ╘═╤═╝   │
                    │        ├─┤├─╢   ├─┤ ? ╟──────────┤     │
                    │        │ └┘ ╚═╤═╛ ╘═╤═╝ ╔════╗ ┌─┴─╖   │
                    │ ╔══════╧══╗ ┌─┴─╖   │   ║ −1 ╟─┤ ≠ ╟───┘
                    │ ║ 2097151 ║ │ ↯ ║       ╚════╝ ╘═══╝
                    │ ╚═════════╝ ╘═╤═╝
                    │             ┌─┴──╖ ╔════╗
                    └─────────────┤ >> ╟─╢ 21 ║
                                  ╘════╝ ╚════╝

anduma sequência de caracteres com 2097151 retorna o primeiro caractere. >>21 por removê-lo. Verificamos ambos 0 e -1 por uma razão explicada na página esolangs ; isso não é relevante para esse desafio, mas quero que a função de biblioteca esteja correta.

Converter caractere em diamante

Essa função usa um único caractere e retorna a estrutura para a pilha vertical que representa esse caractere.

                                   ╔════╗
                                   ║ 96 ║  ╓───╖
                                   ╚══╤═╝  ║ ⬖ ║
                        ┌───╖ ┌───╖ ┌─┴─╖  ╙─┬─╜
                    ┌───┤ ɗ ╟─┤ Ḟ ╟─┤ − ║    │
                    │   ╘═╤═╝ ╘═══╝ ╘═╤═╝    │
                    │   ┌─┴─╖         ├──────┘  ┌──┐
                    │   │ ɹ ║         │     ┌───┤  │
                    │   ╘═╤═╝   ┌─────┘     │   │  │
                  ╔═╧═╗ ┌─┴─╖ ┌─┴─╖         │  ┌┴┐ │
                  ║ 1 ╟─┤   ╟─┤ · ╟─────┐ ╔═╧═╕└┬┘ │
                  ╚═══╝ └─┬─╜ ╘═╤═╝   ┌─┴─╢   ├─┘ ┌┴┐
            ┌───────────┐ │     └─┐   │   ╚═╤═╛   └┬┘
          ┌─┴─╖         │ │ ┌───╖ │   └─┐ ╔═╧═╕ ┌──┴─╖ ╔═══╗
    ┌─────┤ · ╟───┐     │ └─┤ ◆ ╟─┘   ┌─┴─╢   ├─┤ << ╟─╢ 1 ║
 ┌──┴─┐   ╘═╤═╝   │     │   ╘═╤═╝     │   ╚═╤═╛ ╘════╝ ╚═╤═╝
 │ ┌──┴─╖ ┌─┴─╖ ╔═╧═╕ ╔═╧═╕ ┌─┴─╖   ┌─┴─╖ ┌─┴─╖        ┌─┴─╖
 │ │ >> ╟─┤ ⬗ ╟─╢   ├─╢   ├─┤ ʩ ╟───┤ · ╟─┤ ʑ ╟────────┤ ⸗ ║
 │ ╘══╤═╝ ╘═╤═╝ ╚═╤═╛ ╚═╤═╛ ╘═╤═╝   ╘═╤═╝ ╘═╤═╝        ╘═╤═╝
 │  ╔═╧═╗  ┌┴┐    │   ╔═╧═╗   │       └─────┘          ╔═╧═╗
 │  ║ 1 ╟─┐└┬┘    └───╢ 0 ║                            ║ 0 ║
 │  ╚═══╝ ├─┘         ╚═══╝                            ╚═══╝
 └────────┘

Essa função é interessante porque precisávamos que os diamantes fossem anexados alternadamente ao fundo e ao topo. Aqui está como eu fiz isso:

  • Primeiro, subtraia 96 (assim 'a'se torna 1), obtenha os fatores primos ( acima), use ɗpara adicionar o elemento 1 se a sequência estiver vazia e depois inverta ( ɹ) a ordem.

  • Retire o primeiro elemento e ligue para iniciar a pilha.

  • Agora, use para gerar uma sequência lenta que apenas alterna os números 0 e 1 indefinidamente.

  • Use ʑ(zip) nisso e nos demais fatores primos. Para cada fator primo, mova-o para a esquerda por 1 e oro 0/1 para ele. Agora temos uma sequência que codifica os números primos e as informações superior / inferior.

  • Por fim, use ʩ(dobre à esquerda / agregado). O valor inicial é a pilha que geramos a partir do primeiro elemento acima. Para cada valor ν , chame (acrescente um novo diamante) com a pilha anterior, a prime ( ν >> 1) e se superior ou inferior ( ν & 1).

⑨ Programa principal

Aqui nós fazemos o trabalho principal.

                       ┌─────┐
                       │   ┌─┴─╖
                       │   │ ⬖ ║
               ╔═══╗ ╔═╧═╕ ╘═╤═╝
               ║ 0 ╟─╢   ├───┘
               ╚═╤═╝ ╚═╤═╛ ┌───╖ ┌───╖ ╔═══╗
                 └─┐   └───┤ ɱ ╟─┤ ↯ ╟─╢   ║
       ┌─────────┐ └─────┐ ╘═╤═╝ ╘═══╝ ╚═══╝
       │       ┌─┴─╖     │ ┌─┴─╖
       │   ┌───┤ · ╟───┐ └─┤   ╟─┐
       │   │   ╘═╤═╝   │   └─┬─╜ │
       │ ┌─┴─╖ ╔═╧═╕ ╔═╧═╕ ┌─┴─╖ │
       │ │ ❖ ╟─╢   ├─╢   ├─┤ ʩ ╟─┘
       │ ╘═╤═╝ ╚═╤═╛ ╚═╤═╛ ╘═╤═╝
       └───┘   ╔═╧═╗   │   ┌─┴─╖ ┌─┐
               ║ 0 ╟───┘ ┌─┤ ‹ ╟─┴─┘
               ╚═══╝     │ ╘═══╝
                       ┌─┴─╖ ┌─┐
                     ┌─┤ ‹ ╟─┴─┘
                     │ ╘═══╝
      ╔════╗ ┌───╖ ┌─┴─╖ ┌─┐
      ║ 10 ╟─┤ ʝ ╟─┤ ‹ ╟─┴─┘
      ╚════╝ ╘═╤═╝ ╘═══╝
               │

Primeiro, mapeie ( ɱ) sobre os caracteres na sequência de entrada ( ) e transforme cada um em uma pilha de diamantes usando . Retire o primeiro elemento e dobre ( ʩ) sobre o resto para concatená-los todos ( ). Por fim, descompacte a estrutura usando para chegar à sequência de strings e junte todas elas ( ʝ) usando 10 (a nova linha) como separador.

Saída de exemplo

Entrada:

crusaders

Saída (demorou 9 segundos para calcular; não é possível postar aqui porque o limite de tamanho).

Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.