Os números mais sagrados


22

Como aprendemos com The Holy Numbers , existem 5 dígitos sagrados ( 0, 4, 6, 8, 9), e números inteiros positivos consistindo apenas desses dígitos são sagrados. Além disso, a santidade de um número é a soma dos furos no número ( +2para cada 0ou 8, e +1de outro modo).

Agora, há uma propriedade adicional a ser levada em consideração, para representar de maneira verdadeira e precisa a santidade de um número. Veja bem, não é apenas o número de furos no dígito que importa, mas também o local em que ocorre.

Considere o número 88. Pelas nossas velhas regras, teria uma santidade 4. Mas isso não é justo! O 8lado esquerdo está fazendo mais trabalho que o outro 8- 10 vezes o trabalho! Deve ser recompensado por seu trabalho. Nós o recompensaremos com pontos de santidade extras iguais à santidade total de todos os dígitos à sua direita (incluindo os pontos de santidade extras concedidos por esta regra aos dígitos à direita), menos 1.

Aqui estão mais exemplos a serem levados em consideração:

Number: 8080
Digital holiness: (2 + 7 - 1) + (2 + 3 - 1) + (2 + 1 - 1) + (2 + 0 - 1)
Total holiness: 15

Number: 68904
Digital holiness: (1 + 5 - 1) + (2 + 2 - 1) + (1 + 1 - 1) + (2 + 0 - 1) + (1 + 0 - 1)
Total holiness: 10

Todos os dígitos são adequadamente recompensados ​​por seu trabalho com santidade extra, e tudo está bem. Vamos chamar essa propriedade de "holaridade aprimorada".

Na grande linguagem Python, um algoritmo para calcular a holaridade aprimorada pode ser algo como isto:

# assumes n is a holy number
def enhanced_holarity(n):
    if n < 10:
        return 1 if n in [0, 8] else 0
    else:
        digits = list(map(int,str(n)[::-1]))
        res = []
        for i,x in enumerate(digits):
            res.append(enhanced_holarity(x))
            if i > 0:
                res[i] += sum(res[:i])
        return sum(res)

O desafio

Dado um número inteiro n > 0, nproduza os primeiros Números Sagrados, classificados por holaridade aprimorada crescente, usando o valor numérico como desempatador. Você pode assumir que a entrada e a saída não serão maiores que o número máximo máximo representável no seu idioma ou 2^64 - 1, o que for menor.

Para referência, aqui estão alguns casos de teste (entrada, seguidos por saída):

25
4, 6, 9, 44, 46, 49, 64, 66, 69, 94, 96, 99, 0, 8, 84, 86, 89, 40, 48, 60, 68, 90, 98, 80, 88

100
4, 6, 9, 44, 46, 49, 64, 66, 69, 94, 96, 99, 444, 446, 449, 464, 466, 469, 494, 496, 499, 644, 646, 649, 664, 666, 669, 694, 696, 699, 0, 8, 84, 86, 89, 844, 846, 849, 864, 866, 869, 894, 896, 899, 40, 48, 60, 68, 90, 98, 404, 406, 409, 484, 486, 489, 604, 606, 609, 684, 686, 689, 80, 88, 804, 806, 809, 884, 886, 889, 440, 448, 460, 468, 490, 498, 640, 648, 660, 668, 690, 698, 840, 848, 860, 868, 890, 898, 400, 408, 480, 488, 600, 608, 680, 688, 800, 808, 880, 888

200
4, 6, 9, 44, 46, 49, 64, 66, 69, 94, 96, 99, 444, 446, 449, 464, 466, 469, 494, 496, 499, 644, 646, 649, 664, 666, 669, 694, 696, 699, 944, 946, 949, 964, 966, 969, 994, 996, 999, 4444, 4446, 4449, 4464, 4466, 4469, 4494, 4496, 4499, 4644, 4646, 4649, 4664, 4666, 4669, 4694, 4696, 4699, 0, 8, 84, 86, 89, 844, 846, 849, 864, 866, 869, 894, 896, 899, 40, 48, 60, 68, 90, 98, 404, 406, 409, 484, 486, 489, 604, 606, 609, 684, 686, 689, 904, 906, 909, 984, 986, 989, 4044, 4046, 4049, 4064, 4066, 4069, 4094, 4096, 4099, 80, 88, 804, 806, 809, 884, 886, 889, 440, 448, 460, 468, 490, 498, 640, 648, 660, 668, 690, 698, 940, 948, 960, 968, 990, 998, 4404, 4406, 4409, 4484, 4486, 4489, 4604, 4606, 4609, 4684, 4686, 4689, 840, 848, 860, 868, 890, 898, 400, 408, 480, 488, 600, 608, 680, 688, 900, 908, 980, 988, 4004, 4006, 4009, 4084, 4086, 4089, 800, 808, 880, 888, 4440, 4448, 4460, 4468, 4490, 4498, 4640, 4648, 4660, 4668, 4690, 4698, 4040, 4048, 4060, 4068, 4090, 4098, 4400, 4408, 4480, 4488, 4600, 4608, 4680, 4688, 4000, 4008, 4080, 4088

10
Essa ideia do buraco é holariante.
Hobbies de Calvin

O que você quer dizer com "saída não será maior que ..."? Como na saída não terá nenhum número maior que 2^64 - 1? Se for esse o caso, provavelmente vale a pena descobrir qual entrada gera esses números primeiro, para que as pessoas possam testar suas respostas.
FryAmTheEggman

@FryAmTheEggman Não maior que significa menor ou igual a. Vou atualizar a postagem com alguns valores máximos para vários tamanhos inteiros.
Mego 24/02

Seu código python não funciona para 6, que produz uma holines de 0.
shrx

Respostas:


2

Python 2, 138 122 bytes

Isso procura números sagrados de até 5 N para uma entrada N , que é ridiculamente lenta:

e=lambda s:s and(s[0]in'08')+e(s[1:])*2or 0
lambda N:sorted([`x`for x in range(5**N)if set(`x`)<=set('04689')][:N],key=e)

Aqui o limite é 5 N 2 e você pode realmente executar os casos de teste, ao custo de um único byte:

e=lambda s:s and(s[0]in'08')+e(s[1:])*2or 0
lambda N:sorted([`x`for x in range(5*N*N)if set(`x`)<=set('04689')][:N],key=e)

O primeiro fragmento é válido, como 5 N ≥ 5 N 2 para todos os números inteiros positivos N .


Oh, espere, eu perdi alguma coisa .. Cansado demais para isso.
seequ

3

Lua, 317 bytes

Eu tive alguns problemas ao fazer isso, algumas coisas em Lua não funcionam como eu acho. Vou ter que tentar jogar com eles, se quiser jogar golfe. Você pode testar o lua online substituindo arg[1]pelo número de elementos que deseja :).

function f(y)h=0(y..''):reverse():gsub(".",function(c)h=c:find("[08]")and 1+h or h end)return h end
x,a=0,{}while(#a<arg[1]+0)do a[#a+1],x=(x..''):find("^[04689]*$")and x or nil,x+1 end
for i=1,#a do m=1
for j=1,#a do x=a[m]m=(f(x)~=f(a[j])and f(x)>f(a[j])or x>a[j])and j or m
end end print(a[m])table.remove(a,m)end

Ungolfed e explicações

function f(y)                     -- function returning the enhanced holiness of a holy number
  h=0                             -- h is the cumulated holyness of processed digits
  (y..''):reverse()               -- reverse the digits in y
         :gsub(".",function(c)    -- iterate over each digits
     h=c:find("[08]")and 1+h or h -- ternary based on the digit being [08] or [469]
   end)                           
  return h                        -- return h
end

x,a=0,{}                          -- initialise a counter, and the array of holy numbers
while(#a<arg[1]+0)                -- iterate until we have n holy numbers
do
  a[#a+1]=(x..'')                 
      :find("^[04689]*$")         -- if we can't find an unholy digit
             and x or nil         -- insert x into a
  x=x+1                           -- increment x anyway
end

for i=1,#a                        -- iterate n times(current size of a)
do
  m=1                             -- m is the index of the lowest value
  for j=1,#a                      -- iterate over a
  do
    x=a[m]                        -- x is shorter to write than a[m]
    m=(f(x)~=f(a[j])              -- nested ternaries, translated in
        and f(x)>f(a[j])          -- nested if below
        or x>a[j])and j or m      
  end
  print(a[m])                     -- output a[m]
  table.remove(a,m)               -- remove it from the table a
end

Os ternários aninhados usados ​​para o novo valor de mpodem ser traduzidos em ifs aninhados como:

if(f(a[m])~=f(a[j])) then         -- if a[m] and a[j] don't have the same holyness
  if(f(a[m])>f(a[j])) then m=j end-- compare by holyness
else
  if(a[m]>a[j]) then m=j end      -- else, compare by numeric value

Além disso, eu adoraria substituir o aninhado forusando table.sort, mas, por um motivo que não sei, o seguinte não funciona, apesar de não produzir um loop infinito ou esmagar a função de classificação.

table.sort(a,function(i,j)
    return f(i)~=f(j)              
         and f(i)>f(j)          
         or i>j
end)

1

JavaScript (ES6), 166 165 bytes

f=n=>[...Array(n)].map((_,i)=>i.toString(5)).sort((a,b)=>e(a)-e(b),e=n=>'0b'+[...n.replace(/./g,c=>'10010'[c])].reverse().join``).map(n=>+n.replace(/./g,c=>"04689"[c]))

Editar: salvou 1 byte retornando uma matriz de seqüências de caracteres.

Ungolfed:

function base5_to_extended_holiness_binary(c) {
    return "10010"[c];
}
function extended_holiness(n) {
    var binary = n.toString(5).replace(/./g, base5_to_extended_holiness_binary);
    binary = s.split("").reverse().join("");
    return parseInt(s, 2);
}
function extended_holiness_sort(a, b) {
    return extended_holiness(a) - extended_holiness(b);
}
function base5_to_holy_number(c) {
    return "04689"[c];
}
function list_by_extended_holiness(n) {
    var array = new Array(n);
    for (var i = 0; i < n; i++)
         array[i] = i;
    array = array.sort(extended_holiness_sort);
    for (var i = 0; i < n; i++)
        array[i] = parseInt(array[i].toString(5).replace(/./g, base5_to_holy_number);
    return array;
}
Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.