Calcular o número de números primos até n


64

π ( n ) é o número de primos menor ou igual a n .

Entrada: um número natural, n .

Saída: π (n).

Pontuação: Este é um desafio de . A pontuação será a soma das vezes para os casos de pontuação. Eu cronometrarei cada entrada no meu computador.

Regras e detalhes

  • Seu código deve funcionar para n até 2 bilhões (2.000.000.000).

  • Built-ins que trivializam isso não são permitidos. Isso inclui funções π internas ou listas de valores para π ( n ).

  • Built-ins que testam a primalidade ou geram primos não são permitidos. Isso inclui listas de números primos, que não podem ser consultados externamente ou codificados localmente, exceto com relação ao próximo item.

  • Você pode codificar números primos de até 19 inclusive, e não superior.

  • sua implementação de π deve ser determinística. Isso significa que, dado um n específico , seu código deve ser executado (aproximadamente) na mesma quantidade de tempo.

  • Os idiomas usados ​​devem estar disponíveis gratuitamente no Linux (Centos 7). Instruções devem ser incluídas sobre como executar seu código. Inclua detalhes do compilador / intérprete, se necessário.

  • Os horários oficiais serão do meu computador.

  • Ao postar, inclua um tempo medido em alguns / todos os casos de teste / pontuação, apenas para fornecer uma estimativa da velocidade com que seu código está sendo executado.

  • Os envios devem caber em uma resposta a esta pergunta.

  • Estou executando o centos7 de 64 bits. Eu tenho apenas 8 GB de RAM e 1 GB de swap. O modelo da CPU é: Processador AMD FX (tm) -6300 de seis núcleos.

Casos de teste ( fonte ):

Input        Output
90           24
3000         430
9000         1117
4000000      283146           <--- input = 4*10^6
800000000    41146179         <--- input = 9*10^8
1100000000   55662470         <--- input = 1.1*10^9

Casos de pontuação ( mesma fonte )

Como sempre, esses casos estão sujeitos a alterações. A otimização para os casos de pontuação não é permitida. Também posso alterar o número de casos, em um esforço para equilibrar tempos de execução razoáveis ​​e resultados precisos.

Input        Output
1907000000   93875448         <--- input = 1.907*10^9
1337000000   66990613         <--- input = 1.337*10^9
1240000000   62366021         <--- input = 1.24*10^9
660000000    34286170         <--- input = 6.6*10^8
99820000     5751639          <--- input = 9.982*10^7
40550000     2465109          <--- input = 4.055*10^7
24850000     1557132          <--- input = 2.485*10^7
41500        4339

Duração

Como esse é um desafio de e as entradas devem ser executadas no meu computador, reservo-me o direito de interromper as entradas de tempo após 2 semanas. Após esse ponto, as entradas ainda são aceitas, mas não há garantia de que elas tenham sido cronometradas oficialmente.

Dito isto, não espero muitas respostas para este desafio e provavelmente continuarei a cronometrar novas respostas indefinidamente.

Pontuação de Particulares

Programei as entradas mais rápidas com o seguinte script:

#!/bin/bash

a=(1907000000 1337000000 1240000000 660000000 99820000 40550000 24850000 41500)

echo DennisC
exec 2>> times/dennisc.txt
time for j in ${a[@]}; do ./dennisc $j; done >> /dev/null;

echo DennisPy
exec 2>> times/dennispy.txt
time for j in ${a[@]}; do pypy dennispy.py <<< $j; done >> /dev/null;

echo arjandelumens
exec 2>> times/arjandelumens.txt
time for j in ${a[@]}; do ./arjandelumens $j; done >> /dev/null;

echo orlp
exec 2>> times/orlp.txt
time for j in ${a[@]}; do ./orlp $j; done >> /dev/null;

# echo mwr247
# time node-v4.3.1-linux-x64/bin/node mwr247.js

# mwr247 using js seems a bit longer, so I am going to run the fastest
# and then come back to his. 

# mwr247 provided a function, so I appended
# console.log( F( <argument> ) )
# to his code, for each argument.

timeescreve para stderr, então eu enviei stderrpara um arquivo de log usando exec 2 >> <filename>. Você pode perceber que stdouté enviado para /dev/null. Isso não é um problema, porque eu já verifiquei que os programas estavam produzindo a saída correta.

Eu executei o timeall.shscript acima 10 vezes usandofor i in {1..10}; do ./timeall.sh; done;

Em seguida, calculei a média da real timepontuação de cada entrada.

Observe que nenhum outro programa estava sendo executado no meu computador durante o tempo.

Além disso, os horários oficiais foram anexados a cada entrada. Por favor, verifique sua própria média.


O que nos impede de usar uma tabela de pesquisa com os primeiros valores 2e9 de pi (n)? Isso seria aceitável? (Não tenho certeza o quão rápido ele seria, no entanto, porque seria uma grande mesa)
Luis Mendo

@ DonMuesli Isso não seria aceitável (vai contra o espírito do desafio), editei para torná-lo expressamente proibido agora.
Liam

8
É perigoso se referir ao "espírito" do desafio. Seu "contra o espírito" pode ser o "grande truque" de outra pessoa :-) É melhor que você tenha explicitado isso?
Luis Mendo

11
O que é um built-in? Eu tenho uma função de lista de números primos em uma biblioteca. Posso usá-lo? Caso contrário, posso copiar o código fonte da biblioteca no meu programa e usá-lo?
nimi 26/02

11
@Liam: Sim, eu sei, mas o que conta como um built-in? A cópia do código-fonte de uma biblioteca é incorporada?
nimi 26/02

Respostas:


119

C, 0,026119s (12 de março de 2016)

#include <math.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

#define cache_size 16384
#define Phi_prec_max (47 * a)

#define bit(k) (1ULL << ((k) & 63))
#define word(k) sieve[(k) >> 6]
#define sbit(k) ((word(k >> 1) >> (k >> 1)) & 1)
#define ones(k) (~0ULL >> (64 - (k)))
#define m2(k) ((k + 1) / 2)
#define max(a, b) ((a) > (b) ? (a) : (b))
#define min(a, b) ((a) < (b) ? (a) : (b))
#define ns(t) (1000000000 * t.tv_sec + t.tv_nsec)
#define popcnt __builtin_popcountll

#define mask_build(i, p, o, m) mask |= m << i, i += o, i -= p * (i >= p)
#define Phi_prec_bytes ((m2(Phi_prec_max) + 1) * sizeof(int16_t))
#define Phi_prec(i, j) Phi_prec_pointer[(j) * (m2(Phi_prec_max) + 1) + (i)]
#define Phi_6_next ((i / 1155) * 480 + Phi_5[i % 1155] - Phi_5[(i + 6) / 13])
#define Phi_6_upd_1() t = Phi_6_next, i += 1, *(l++) = t
#define Phi_6_upd_2() t = Phi_6_next, i += 2, *(l++) = t, *(l++) = t
#define Phi_6_upd_3() t = Phi_6_next, i += 3, *(l++) = t, *(l++) = t, *(l++) = t

typedef unsigned __int128 uint128_t;
struct timespec then, now;
uint64_t a, primes[4648] = { 2, 3, 5, 7, 11, 13, 17, 19 }, *primes_fastdiv;
uint16_t *Phi_6, *Phi_prec_pointer;

inline uint64_t Phi_6_mod(uint64_t y)
{
    if (y < 30030)
        return Phi_6[m2(y)];
    else
        return (y / 30030) * 5760 + Phi_6[m2(y % 30030)];
}

inline uint64_t fastdiv(uint64_t dividend, uint64_t fast_divisor)
{
    return ((uint128_t) dividend * fast_divisor) >> 64;
}

uint64_t Phi(uint64_t y, uint64_t c)
{
    uint64_t *d = primes_fastdiv, i = 0, r = Phi_6_mod(y), t = y / 17;

    r -= Phi_6_mod(t), t = y / 19;

    while (i < c && t > Phi_prec_max) r -= Phi(t, i++), t = fastdiv(y, *(d++));

    while (i < c && t) r -= Phi_prec(m2(t), i++), t = fastdiv(y, *(d++));

    return r;
}

uint64_t Phi_small(uint64_t y, uint64_t c)
{
    if (!c--) return y;

    return Phi_small(y, c) - Phi_small(y / primes[c], c);
}

uint64_t pi_small(uint64_t y)
{
    uint64_t i, r = 0;

    for (i = 0; i < 8; i++) r += (primes[i] <= y);

    for (i = 21; i <= y; i += 2)
        r += i % 3 && i % 5 && i % 7 && i % 11 && i % 13 && i % 17 && i % 19;

    return r;
}

int output(int result)
{
    clock_gettime(CLOCK_REALTIME, &now);
    printf("pi(x) = %9d    real time:%9ld ns\n", result , ns(now) - ns(then));

    return 0;
}

int main(int argc, char *argv[])
{
    uint64_t b, i, j, k, limit, mask, P2, *p, start, t = 8, x = atoi(argv[1]);
    uint64_t root2 = sqrt(x), root3 = pow(x, 1./3), top = x / root3 + 1;
    uint64_t halftop = m2(top), *sieve, sieve_length = (halftop + 63) / 64;
    uint64_t i3 = 1, i5 = 2, i7 = 3, i11 = 5, i13 = 6, i17 = 8, i19 = 9;
    uint16_t Phi_3[] = { 0, 1, 1, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 7, 8 };
    uint16_t *l, *m, Phi_4[106], Phi_5[1156];

    clock_gettime(CLOCK_REALTIME, &then);

    sieve = malloc(sieve_length * sizeof(int64_t));

    if (x < 529) return output(pi_small(x));

    for (i = 0; i < sieve_length; i++)
    {
        mask  = 0;

        mask_build( i3,  3,  2, 0x9249249249249249ULL);
        mask_build( i5,  5,  1, 0x1084210842108421ULL);
        mask_build( i7,  7,  6, 0x8102040810204081ULL);
        mask_build(i11, 11,  2, 0x0080100200400801ULL);
        mask_build(i13, 13,  1, 0x0010008004002001ULL);
        mask_build(i17, 17,  4, 0x0008000400020001ULL);
        mask_build(i19, 19, 12, 0x0200004000080001ULL);

        sieve[i] = ~mask;
    }

    limit = min(halftop, 8 * cache_size);

    for (i = 21; i < root3; i += 2)
        if (sbit(i))
            for (primes[t++] = i, j = i * i / 2; j < limit; j += i)
                word(j) &= ~bit(j);

    a = t;

    for (i = root3 | 1; i < root2 + 1; i += 2)
        if (sbit(i)) primes[t++] = i;

    b = t;

    while (limit < halftop)
    {
        start = 2 * limit + 1, limit = min(halftop, limit + 8 * cache_size);

        for (p = &primes[8]; p < &primes[a]; p++)
            for (j = max(start / *p | 1, *p) * *p / 2; j < limit; j += *p)
                word(j) &= ~bit(j);
    }

    P2 = (a - b) * (a + b - 1) / 2;

    for (i = m2(root2); b --> a; P2 += t, i = limit)
    {
        limit = m2(x / primes[b]), j = limit & ~63;

        if (i < j)
        {
            t += popcnt((word(i)) >> (i & 63)), i = (i | 63) + 1;

            while (i < j) t += popcnt(word(i)), i += 64;

            if (i < limit) t += popcnt(word(i) & ones(limit - i));
        }
        else if (i < limit) t += popcnt((word(i) >> (i & 63)) & ones(limit - i));
    }

    if (a < 7) return output(Phi_small(x, a) + a - 1 - P2);

    a -= 7, Phi_6 = malloc(a * Phi_prec_bytes + 15016 * sizeof(int16_t));
    Phi_prec_pointer = &Phi_6[15016];

    for (i = 0; i <= 105; i++)
        Phi_4[i] = (i / 15) * 8 + Phi_3[i % 15] - Phi_3[(i + 3) / 7];

    for (i = 0; i <= 1155; i++)
        Phi_5[i] = (i / 105) * 48 + Phi_4[i % 105] - Phi_4[(i + 5) / 11];

    for (i = 1, l = Phi_6, *l++ = 0; i <= 15015; )
    {
        Phi_6_upd_3(); Phi_6_upd_2(); Phi_6_upd_1(); Phi_6_upd_2();
        Phi_6_upd_1(); Phi_6_upd_2(); Phi_6_upd_3(); Phi_6_upd_1();
    }

    for (i = 0; i <= m2(Phi_prec_max); i++)
        Phi_prec(i, 0) = Phi_6[i] - Phi_6[(i + 8) / 17];

    for (j = 1, p = &primes[7]; j < a; j++, p++)
    {
        i = 1, memcpy(&Phi_prec(0, j), &Phi_prec(0, j - 1), Phi_prec_bytes);
        l = &Phi_prec(*p / 2 + 1, j), m = &Phi_prec(m2(Phi_prec_max), j) - *p;

        while (l <= m)
            for (k = 0, t = Phi_prec(i++, j - 1); k < *p; k++) *(l++) -= t;

        t = Phi_prec(i++, j - 1);

        while (l <= m + *p) *(l++) -= t;
    }

    primes_fastdiv = malloc(a * sizeof(int64_t));

    for (i = 0, p = &primes[8]; i < a; i++, p++)
    {
        t = 96 - __builtin_clzll(*p);
        primes_fastdiv[i] = (bit(t) / *p + 1) << (64 - t);
    }

    return output(Phi(x, a) + a + 6 - P2);
}

Isso usa o método Meissel-Lehmer .

Horários

Na minha máquina, estou recebendo aproximadamente 5,7 milissegundos para os casos de teste combinados. Este é um Intel Core i7-3770 com RAM DDR3 a 1867 MHz, executando o openSUSE 13.2.

$ ./timepi '-march=native -O3' pi 1000
pi(x) =  93875448    real time:  2774958 ns
pi(x) =  66990613    real time:  2158491 ns
pi(x) =  62366021    real time:  2023441 ns
pi(x) =  34286170    real time:  1233158 ns
pi(x) =   5751639    real time:   384284 ns
pi(x) =   2465109    real time:   239783 ns
pi(x) =   1557132    real time:   196248 ns
pi(x) =      4339    real time:    60597 ns

0.00572879 s

Como a variação ficou muito alta , estou usando tempos de dentro do programa para os tempos de execução não oficiais. Este é o script que calculou a média dos tempos de execução combinados.

#!/bin/bash

all() { for j in ${a[@]}; do ./$1 $j; done; }

gcc -Wall $1 -lm -o $2 $2.c

a=(1907000000 1337000000 1240000000 660000000 99820000 40550000 24850000 41500)

all $2

r=$(seq 1 $3)

for i in $r; do all $2; done > times

awk -v it=$3 '{ sum += $6 } END { print "\n" sum / (1e9 * it) " s" }' times

rm times

Horários oficiais

Desta vez, é para fazer os casos de pontuação 1000 vezes.

real    0m28.006s
user    0m15.703s
sys 0m14.319s

Como funciona

Fórmula

Seja um número inteiro positivo.x

Cada número inteiro positivo satisfaz exatamente uma das seguintes condições.nx

  1. n=1

  2. n é divisível por um número primo em .p[1,x3]

  3. n=pq , onde e são (não necessariamente distintos) números primos em .pq(x3,x23)

  4. n é primo en>x3

Seja o número de primos tais que . Existem números que se enquadram na quarta categoria.π(y)ppyπ(x)π(x3)

Seja denotar a quantidade de números inteiros positivos que são produtos de exatamente números primos que não estão entre os primeiros números primos. Existem números que se enquadram na terceira categoria.Pk(y,c)mykcP2(x,π(x3))

Finalmente, vamos denotar a quantidade de números inteiros positivos que são coprime para os primeiros números primos. Existem números que se enquadram na segunda categoria.ϕ(y,c)kycxϕ(x,π(x3))

Como existem números em todas as categorias,x

1+xϕ(x,π(x3))+P2(x,π(x3))+π(x)π(x3)=x

e, portanto,

π(x)=ϕ(x,π(x3))+π(x3)1P2(x,π(x3))

Os números na terceira categoria têm uma representação única se exigirmos que e, portanto, . Desta forma, o produto da primos e está na terceira categoria, se e somente se , portanto, não sãopqpxpqx3<pqxpπ(xp)π(p)+1qpP2(x,π(x3))=π(x3)<kπ(x)(π(xpk)π(pk)+1)pkkth

nycn=pkfpknkcfk1

ϕ(y,c)=y1kcϕ(ypk,k1)c=0ϕ(y,0)=y

π(x)π(x23)

Algoritmo

π(xp)px3x23

[1,x]π(x3)π(x)xpkk(π(x3),π(x)]

π(x3)<kπ(x)(π(pk)+1)π(x3)π(x))(π(x3)+π(x)12P2(x,π(x3))

ϕ2cϕ(y,c)

ϕ(0,c)=0cϕ(y,c)=y1kc,pkyϕ(ypk,k1)2109

ycϕϕ(y,c)=ϕ(y,c)c<kc,pkyϕ(ypk,k1)ϕ(y,c)cy

mc=1kcpkϕ(mc,c)=φ(mc)[1,mc]p1,,pcmcgcd(z+mc,mc)=gcd(z,mc)ϕ(y,c)=ϕ(ymcmc,c)+ϕ(y

φ(mc)=1kcφ(pk)=1kc(pk1)ϕ(y,c)yy[0,mc)

c=c1ϕ(y,c)=ϕ(y,c1)ϕ(ypc,c1)ϕ(y,c)c

ϕ(y,c)cy

Implementação

A seção anterior cobre a maioria das partes do código. Um detalhe restante e importante é como as divisões na função Phisão executadas.

ϕπ(x3)fastdivypydp264pypdpy264264dpy

dpyp


22
Não se supera simplesmente Dennis?
Addison Crump

8
Honestamente, eu simplesmente não posso acreditar o quão rápido isso é. Ainda não tive tempo de entender o que está acontecendo, mas realmente preciso.
Liam

27
@Liam: pretendo explicar como isso funciona, mas ainda estou tentando acelerar. Agora, eu realmente desejo PPCG teve LaTeX ...
Dennis

15
Nota divertida: (Na minha máquina) No momento, ele está superando o built-in do Mathematica e o kimwalisch na biblioteca C ++ do primitount do github, no entanto, atualmente é a única entrada a fazê-lo.
Michael Klein

10
@TheNumberOne Shh, não diga a ele sobre isso ... outras pessoas podem precisar que, para vencê-lo
Liam

24

C99 / C ++, 8.9208s (28 de fevereiro de 2016)

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>

uint64_t popcount( uint64_t v )
    {
    v = (v & 0x5555555555555555ULL) + ((v>>1) & 0x5555555555555555ULL);
    v = (v & 0x3333333333333333ULL) + ((v>>2) & 0x3333333333333333ULL);
    v = (v & 0x0F0F0F0F0F0F0F0FULL) + ((v>>4) & 0x0F0F0F0F0F0F0F0FULL);
    v *= 0x0101010101010101ULL;
    return v >> 56;
    }

#define PPROD  3*5*7

int primecount( int limit )
    {
    int i,j;
    int reps = (limit-1)/(64*PPROD) + 1;
    int mod_limit = reps * (64*PPROD);
    int seek_limit = (int)ceil( sqrt(limit) );
    int primecount = 0;
    int slice_count = limit/250000 + 1;

    uint8_t *buf = (uint8_t *)malloc( mod_limit/8 + seek_limit);
    int *primes = (int *)malloc(seek_limit*sizeof(int));

    // initialize a repeating bit-pattern to fill our sieve-memory with
    uint64_t v[PPROD];
    memset(v, 0, sizeof(v) );
    for(i=0;i<(64*PPROD);i++)
        for(j=2;j<=7;j++)
            if( i % j == 0 )
                v[ i >> 6 ] |= 1ULL << (i & 0x3F);

    for(i=0; i<reps; i++)
        memcpy( buf + 8*PPROD*i, v, 8*PPROD );

    // use naive E-sieve to get hold of all primes to test for
    for(i=11;i<seek_limit;i+=2)
        {
        if( (buf[i >> 3] & (1 << (i & 7)) ) == 0 )
            {
            primes[primecount++] = i;
            for(j=3*i;j<seek_limit;j += 2*i )
                buf[j >> 3] |= (1 << (j&7) );
            }
        }

    // fill up whole E-sieve. Use chunks of about 30 Kbytes
    // so that the chunk of E-sieve we're working on
    // can fit into the L1-cache.
    for(j=0;j<slice_count;j++)
        {
        int low_bound = ((uint64_t)limit * j) / slice_count;
        int high_bound = ((uint64_t)limit * (j+1)) / slice_count - 1;

        for(i=0;i<primecount;i++)
            {
            int pm = primes[i];
            // compute the first odd multiple of pm that is larger than or equal
            // to the lower bound.
            uint32_t lb2 = (low_bound + pm - 1) / pm;
            lb2 |= 1;
            if( lb2 < 3 ) lb2 = 3;
            lb2 *= pm;
            uint32_t hb2 = (high_bound / pm) * pm;

            uint32_t kt1 = ((lb2 + 2*pm) >> 3) - (lb2 >> 3);
            uint32_t kt2 = ((lb2 + 4*pm) >> 3) - (lb2 >> 3);
            uint32_t kt3 = ((lb2 + 6*pm) >> 3) - (lb2 >> 3);

            uint32_t kx0 = 1 << (lb2 & 7);
            uint32_t kx1 = 1 << ((lb2 + 2*pm) & 7);
            uint32_t kx2 = 1 << ((lb2 + 4*pm) & 7);
            uint32_t kx3 = 1 << ((lb2 + 6*pm) & 7);

            uint8_t *lb3 = buf + (lb2 >> 3);
            uint8_t *hb3 = buf + (hb2 >> 3);

            uint8_t *kp;
            for(kp=lb3; kp<=hb3; kp+=pm)
                {
                kp[0]   |= kx0;
                kp[kt1] |= kx1;
                kp[kt2] |= kx2;
                kp[kt3] |= kx3;
                }
            }
        }

    // flag tail elements to exclude them from prime-counting.
    for(i=limit;i<mod_limit;i++)
        buf[i >> 3] |= 1 << (i&7);

    int sum = 0;
    uint64_t *bufx = (uint64_t *)buf;

    for(i=0;i<mod_limit>>6;i++)
        sum += popcount( bufx[i] );

    free(buf);
    free(primes);

    return mod_limit - sum + 3;
    }


int main( int argc, char **argv)
    {
    if( argc != 2 )
        {
        printf("Please provide an argument\n");
        exit(1);
        }

    int limit = atoi( argv[1] );
    if( limit < 3 || limit > 2000000000 )
        {
        printf("Argument %d out of range\n", limit );
        exit(1);
        }

    printf("%d\n", primecount(limit) );
    }

Uma implementação de peneira de erastotenos baseada em bitmap. Ele executa as seguintes etapas:

  1. Primeiro, gere um padrão de bits repetitivo para preencher a peneira, que cubra múltiplos de 2,3,5,7
  2. Em seguida, use o método peneira para gerar uma matriz de todos os números primos menores que sqrt (n)
  3. Em seguida, use a lista principal do passo anterior para escrever na peneira. Isso é feito em pedaços da peneira que são aproximadamente do tamanho do cache L1, para que o processamento da peneira não atravesse constantemente o cache L1; isso parece provocar uma aceleração de 5x em vez de não fragmentar.
  4. Por fim, faça uma contagem de bits.

Compilado gcc primecount.c -O3 -lm -Walle executado no ubuntu 15.10 (64 bits) em um i7-4970k, leva cerca de 2,2 segundos para o conjunto completo de casos de pontuação. O tempo de execução é dominado pela etapa 3; isso pode ser multithread, se desejado, uma vez que os pedaços são independentes; isso exigiria alguns cuidados para garantir que os limites do pedaço estejam adequadamente alinhados.

Aloca um pouco mais de memória do que o estritamente necessário para a peneira; isso abre espaço para alguma saturação no final do buffer, necessária para que o desenrolamento do loop na etapa 3 funcione corretamente.

Horários oficiais

real    0m8.934s
user    0m8.795s
sys 0m0.150s

real    0m8.956s
user    0m8.818s
sys 0m0.150s

real    0m8.907s
user    0m8.775s
sys 0m0.145s

real    0m8.904s
user    0m8.775s
sys 0m0.141s

real    0m8.902s
user    0m8.783s
sys 0m0.132s

real    0m9.087s
user    0m8.923s
sys 0m0.176s

real    0m8.905s
user    0m8.778s
sys 0m0.140s

real    0m9.005s
user    0m8.859s
sys 0m0.158s

real    0m8.911s
user    0m8.789s
sys 0m0.135s

real    0m8.907s
user    0m8.781s
sys 0m0.138s

8
Bem-vindo à Programação de quebra-cabeças e código de golfe e parabéns pelo excelente primeiro post!
Dennis

Considere usar -O3 -march=native. Sua CPU suporta a popcntinstrução e, às vezes, os compiladores podem reconhecer algumas implementações C em puro e compilar com a única instrução. (Ou melhor, use __builtin_popcountllno GNU C, como a resposta de Dennis).
Peter Cordes

-march=nativena sua CPU Haswell também habilitará o IMC2 para obter instruções mais eficientes de troca de contagem variável. ( SHLX em vez do SHL legado que precisa contar cl.) A CPU AMD Piledriver do OP não possui BMI2, mas possui popcnt. Porém, os processadores AMD executam SHL de contagem variável mais rápido que os processadores Intel; portanto, a compilação com o BMI2 enquanto o ajuste ainda pode ser apropriado. Piledriver é bastante diferente de Haswell, tanto quanto micro-otimizações ir, mas pedindo -march=nativeé bom
Peter Cordes

12

Python 2 (PyPy 4.0), 2.36961s (29 de fevereiro de 2016)

def Phi(m, b):
    if not b:
        return m
    if not m:
        return 0
    if m >= 800:
        return Phi(m, b - 1) - Phi(m // primes[b - 1], b - 1)
    t = b * 800 + m
    if not Phi_memo[t]:
        Phi_memo[t] =  Phi(m, b - 1) - Phi(m // primes[b - 1], b - 1)
    return Phi_memo[t]

x = int(input())

if x < 6:
    print [0, 0, 1, 2, 2, 3][x]
    exit()

root2 = int(x ** (1./2))
root3 = int(x ** (1./3))
top = x // root3 + 1
sieve = [0, 0] + [1] * (top - 2)
pi = [0, 0]
primes = []
t = 0

for i in range(2, top):
    if sieve[i] == 1:
        t += 1
        primes.append(i)
        sieve[i::i] = [0] * len(sieve[i::i])
    pi.append(t)

a, b = pi[root3 + 1], pi[root2 + 1]
Phi_memo = [0] * ((a + 1) * 800)

print Phi(x, a) + a - 1 - sum(pi[x // p] - pi[p] + 1 for p in primes[a:b])

Isso usa o método Meissel-Lehmer.

Horários

$ time for i in 1.907e9 1.337e9 1.24e9 6.6e8 9.982e7 4.055e7 2.485e7 41500
> do pypy pi.py <<< $i; done
93875448
66990613
62366021
34286170
5751639
2465109
1557132
4339

real    0m1.696s
user    0m1.360s
sys     0m0.332s

Horários oficiais

Como houve outra resposta em um período semelhante, optei por obter resultados mais precisos. Eu cronometrei isso 100 vezes. A pontuação é o seguinte, dividida por 100.

real    3m56.961s
user    3m38.802s
sys 0m18.512s

5
Além disso, basta observar: esse código é 15.102,4 vezes mais rápido que o meu. +1
Addison Crump

12

Java, 25.725.315 segundos nesta máquina

Isso não vai ganhar , eu só queria postar uma resposta que não use peneiras.

ATUALIZAÇÃO: Atualmente, está classificado em cerca de 150.440.4386 vezes mais lento que a pontuação principal. Suba para votar, a resposta é incrível.

Código de bytes:

0000000: cafe babe 0000 0034 0030 0a00 0900 1709  .......4.0......
0000010: 0018 0019 0a00 1a00 1b0a 0008 001c 0a00  ................
0000020: 1d00 1e0a 0008 001f 0a00 2000 2107 0022  .......... .!.."
0000030: 0700 2301 0006 3c69 6e69 743e 0100 0328  ..#...<init>...(
0000040: 2956 0100 0443 6f64 6501 000f 4c69 6e65  )V...Code...Line
0000050: 4e75 6d62 6572 5461 626c 6501 0004 6d61  NumberTable...ma
0000060: 696e 0100 1628 5b4c 6a61 7661 2f6c 616e  in...([Ljava/lan
0000070: 672f 5374 7269 6e67 3b29 5601 0008 6e75  g/String;)V...nu
0000080: 6d50 7269 6d65 0100 0428 4929 4901 000d  mPrime...(I)I...
0000090: 5374 6163 6b4d 6170 5461 626c 6501 0007  StackMapTable...
00000a0: 6973 5072 696d 6501 0004 2849 295a 0100  isPrime...(I)Z..
00000b0: 0a53 6f75 7263 6546 696c 6501 0006 452e  .SourceFile...E.
00000c0: 6a61 7661 0c00 0a00 0b07 0024 0c00 2500  java.......$..%.
00000d0: 2607 0027 0c00 2800 290c 0010 0011 0700  &..'..(.).......
00000e0: 2a0c 002b 002c 0c00 1300 1407 002d 0c00  *..+.,.......-..
00000f0: 2e00 2f01 0001 4501 0010 6a61 7661 2f6c  ../...E...java/l
0000100: 616e 672f 4f62 6a65 6374 0100 106a 6176  ang/Object...jav
0000110: 612f 6c61 6e67 2f53 7973 7465 6d01 0003  a/lang/System...
0000120: 6f75 7401 0015 4c6a 6176 612f 696f 2f50  out...Ljava/io/P
0000130: 7269 6e74 5374 7265 616d 3b01 0011 6a61  rintStream;...ja
0000140: 7661 2f6c 616e 672f 496e 7465 6765 7201  va/lang/Integer.
0000150: 0008 7061 7273 6549 6e74 0100 1528 4c6a  ..parseInt...(Lj
0000160: 6176 612f 6c61 6e67 2f53 7472 696e 673b  ava/lang/String;
0000170: 2949 0100 136a 6176 612f 696f 2f50 7269  )I...java/io/Pri
0000180: 6e74 5374 7265 616d 0100 0770 7269 6e74  ntStream...print
0000190: 6c6e 0100 0428 4929 5601 000e 6a61 7661  ln...(I)V...java
00001a0: 2f6c 616e 672f 4d61 7468 0100 0473 7172  /lang/Math...sqr
00001b0: 7401 0004 2844 2944 0021 0008 0009 0000  t...(D)D.!......
00001c0: 0000 0004 0001 000a 000b 0001 000c 0000  ................
00001d0: 001d 0001 0001 0000 0005 2ab7 0001 b100  ..........*.....
00001e0: 0000 0100 0d00 0000 0600 0100 0000 0100  ................
00001f0: 0900 0e00 0f00 0100 0c00 0000 2c00 0300  ............,...
0000200: 0100 0000 10b2 0002 2a03 32b8 0003 b800  ........*.2.....
0000210: 04b6 0005 b100 0000 0100 0d00 0000 0a00  ................
0000220: 0200 0000 0300 0f00 0400 0a00 1000 1100  ................
0000230: 0100 0c00 0000 6600 0200 0300 0000 2003  ......f....... .
0000240: 3c03 3d1c 1aa2 0018 1b1c b800 0699 0007  <.=.............
0000250: 04a7 0004 0360 3c84 0201 a7ff e91b ac00  .....`<.........
0000260: 0000 0200 0d00 0000 1600 0500 0000 0600  ................
0000270: 0200 0700 0900 0800 1800 0700 1e00 0900  ................
0000280: 1200 0000 1800 04fd 0004 0101 5001 ff00  ............P...
0000290: 0000 0301 0101 0002 0101 fa00 0700 0a00  ................
00002a0: 1300 1400 0100 0c00 0000 9700 0300 0300  ................
00002b0: 0000 4c1a 05a2 0005 03ac 1a05 9f00 081a  ..L.............
00002c0: 06a0 0005 04ac 1a05 7099 0009 1a06 709a  ........p.....p.
00002d0: 0005 03ac 1a87 b800 078e 0460 3c10 063d  ...........`<..=
00002e0: 1c1b a300 1b1a 1c04 6470 9900 0b1a 1c04  ........dp......
00002f0: 6070 9a00 0503 ac84 0206 a7ff e604 ac00  `p..............
0000300: 0000 0200 0d00 0000 2200 0800 0000 0c00  ........".......
0000310: 0700 0d00 1300 0e00 2100 0f00 2a00 1000  ........!...*...
0000320: 3200 1100 4400 1000 4a00 1200 1200 0000  2...D...J.......
0000330: 1100 0907 0901 0b01 fd00 0b01 0114 01fa  ................
0000340: 0005 0001 0015 0000 0002 0016            ............

Código fonte:

public class E {
    public static void main(String[]args){
        System.out.println(numPrime(Integer.parseInt(args[0])));
    }
    private static int numPrime(int max) {
        int toReturn = 0;
        for (int i = 0; i < max; i++)
            toReturn += (isPrime(i))?1:0;
        return toReturn;
    }
    private static boolean isPrime(int n) {
            if(n < 2) return false;
            if(n == 2 || n == 3) return true;
            if(n%2 == 0 || n%3 == 0) return false;
            int sqrtN = (int)Math.sqrt(n)+1;
            for(int i = 6; i <= sqrtN; i += 6)
                if(n%(i-1) == 0 || n%(i+1) == 0) return false;
            return true;
    }
}

Acontece que o otimizador estava, de fato, aumentando o tempo gasto. > Droga.

A entrada abaixo de 1000 parece levar um tempo médio de 0,157 no meu computador (provavelmente devido ao carregamento da classe ಠ_ಠ), mas após cerca de 1e7, fica complicado.

Lista de tempo:

> time java E 41500;time java E 24850000;time java E 40550000;time java E 99820000;time java E 660000000;time java E 1240000000;time java E 1337000000;time java E 1907000000
4339

real    0m0.236s
user    0m0.112s
sys     0m0.024s
1557132

real    0m8.842s
user    0m8.784s
sys     0m0.060s
2465109

real    0m18.442s
user    0m18.348s
sys     0m0.116s
5751639

real    1m15.642s
user    1m8.772s
sys     0m0.252s
34286170

real    40m35.810s
user    16m5.240s
sys     0m5.820s
62366021

real    104m12.628s
user    39m32.348s
sys     0m13.584s
66990613

real    110m22.064s
user    42m28.092s
sys     0m11.320s
93875448

real    171m51.650s
user    68m39.968s
sys     0m14.916s

11
Atualmente, o Java está sendo executado em uma CPU 100% consistente. Isso é totalmente eficiente. Do que você está falando?
Addison Crump

você pode me dar um tutorial completo sobre como java (porque C / C ++> java). Eu compilar com javac voteToClose.java(renomei a classe) e depois o que?
Liam

@Liamjava voteToClose <input>
Addison Crump

11
Aguarde ... Por que o código de bytes diz cafe babe?
Cyoce 27/02

12
@Cyoce Todos os arquivos de classe Java são direcionados com 0xCAFEBABE.
Addison Crump

8

Ferrugem, 0,37001 seg (12 de junho de 2016)

Cerca de 10 vezes mais lento que a Cresposta de Dennis , mas 10 vezes mais rápido que sua entrada em Python. Essa resposta é possível por @Shepmaster e @Veedrac, que ajudaram a aprimorá-la na Revisão de Código . É retirado literalmente da publicação de @ Veedrac .

use std::env;

const EMPTY: usize = std::usize::MAX;
const MAX_X: usize = 800;

fn main() {
    let args: Vec<_> = env::args().collect();
    let x: usize = args[1].trim().parse().expect("expected a number");

    let root = (x as f64).sqrt() as usize;
    let y = (x as f64).powf(0.3333333333333) as usize + 1;

    let sieve_size = x / y + 2;
    let mut sieve = vec![true; sieve_size];
    let mut primes = vec![0; sieve_size];
    sieve[0] = false;
    sieve[1] = false;

    let mut a = 0;
    let mut num_primes = 1;

    let mut num_primes_smaller_root = 0;

    // find all primes up to x/y ~ x^2/3 aka sieve_size
    for i in 2..sieve_size {
        if sieve[i] {
            if i <= root {
                if i <= y {
                    a += 1;
                }
                num_primes_smaller_root += 1;
            }

            primes[num_primes] = i;
            num_primes += 1;
            let mut multiples = i;
            while multiples < sieve_size {
                sieve[multiples] = false;
                multiples += i;
            }
        }
    }

    let interesting_primes = primes[a + 1..num_primes_smaller_root + 1].iter();

    let p_2 =
        interesting_primes
        .map(|ip| primes.iter().take_while(|&&p| p <= x / ip).count())
        .enumerate()
        .map(|(i, v)| v - 1 - i - a)
        .fold(0, |acc, v| acc + v);

    let mut phi_results = vec![EMPTY; (a + 1) * MAX_X];
    println!("pi({}) = {}", x, phi(x, a, &primes, &mut phi_results) + a - 1 - p_2);
}

fn phi(x: usize, b: usize, primes: &[usize], phi_results: &mut [usize]) -> usize {
    if b == 0 {
        return x;
    }

    if x < MAX_X && phi_results[x + b * MAX_X] != EMPTY {
        return phi_results[x + b * MAX_X];
    }

    let value = phi(x, b - 1, primes, phi_results) - phi(x / primes[b], b - 1, primes, phi_results);
    if x < MAX_X {
        phi_results[x + b * MAX_X] = value;
    }
    value
}

Cronometrado com: time ./time.shonde se time.shparece:

#!/bin/bash

a=(1907000000 1337000000 1240000000 660000000 99820000 40550000 24850000 41500)

for i in {0..100}; do
    for j in ${a[@]}; do
        ./target/release/pi_n $j  > /dev/null;
    done;
done;

Aqui está a saída.

[me@localhost pi_n]$ time ./time.sh 

real    0m37.011s
user    0m34.752s
sys 0m2.410s

8

Node.js (JavaScript / ES6), 83.549s (11 de novembro de 2016)

var n=process.argv[2]*1,r=new Uint8Array(n),p=0,i=1,j
while(++i<=n){
  if(r[i]===0){
    for(j=i*i;j<=n;j+=i){r[j]=1}
    p+=1
  }
}
console.log(p)

Finalmente comecei a refazer isso, e é menor / mais simples e MUITO mais rápido do que antes. Em vez de um método de força bruta mais lento, ele utiliza a Peneira de Eratóstenes juntamente com estruturas de dados mais eficientes, para que agora possa realmente terminar em um tempo respeitável (tanto quanto eu posso encontrar na internet, é a contagem principal de JS mais rápida função lá fora).

Alguns tempos de demonstração (i7-3770k):

10^4 (10,000) => 0.001 seconds
10^5 (100,000) => 0.003 seconds
10^6 (1,000,000) => 0.009 seconds
10^7 (10,000,000) => 0.074 seconds
10^8 (100,000,000) => 1.193 seconds
10^9 (1,000,000,000) => 14.415 seconds

Por que +=1e não ++?
ETHproductions

@ETHproductions Depende se você quer dizer pré ou pós-incremento. i++precisa manter a alteração de valor para outra operação, o que nessa escala leva a um pequeno, porém perceptível, desempenho. Não testei o pré-incremento, mas suspeito que será o mesmo que +=1.
Mwr247

Mas +=1precisa alocar 1na memória. Eu acho que. Se eu fosse você, eu usaria ++i. Eu acho que existe uma única instrução para incrementar um valor, então, não tenho certeza.
Ismael Miguel

Por que está tão condensado? Isso não é código-golfe e é realmente difícil de ler.
Cyoce 27/02

Além disso, pode (...)|0;i=0ser (...)|(i=0)
útil

6

C ++ 11, 22.6503s (28 de fevereiro de 2016)

Compile com g++ -O2 -m64 -march=native -ftree-vectorize -std=c++11 numprimes.cpp. Essas opções são importantes. Você também precisa ter o Boost instalado. No Ubuntu, isso está disponível instalando libboost-all-dev.

Se você estiver no Windows, posso recomendar a instalação g++e o Boost através do MSYS2 . Eu escrevi um bom tutorial sobre como instalar o MSYS2. Depois de seguir o tutorial, você pode instalar o Boost usando pacman -Sy `pacman -Ssq boost`.

#include <cmath>
#include <cstdint>
#include <iostream>
#include <vector>
#include <boost/dynamic_bitset.hpp>

uint64_t num_primes(uint64_t n) {
    // http://stackoverflow.com/questions/4643647/fast-prime-factorization-module
    uint64_t pi = (n >= 2) + (n >= 3);
    if (n < 5) return pi;

    n += 1;
    uint64_t correction = n % 6 > 1;
    uint64_t wheels[6] = { n, n - 1, n + 4, n + 3, n + 2, n + 1 };
    uint64_t limit = wheels[n % 6];

    boost::dynamic_bitset<> sieve(limit / 3);
    sieve.set();
    sieve[0] = false;

    for (uint64_t i = 0, upper = uint64_t(std::sqrt(limit))/3; i <= upper; ++i) {
        if (sieve[i]) {
            uint64_t k = (3*i + 1) | 1;
            for (uint64_t j = (k*k) / 3;                   j < limit/3; j += 2*k) sieve[j] = false;
            for (uint64_t j = (k*k + 4*k - 2*k*(i & 1))/3; j < limit/3; j += 2*k) sieve[j] = false;
        }
    }

    pi += sieve.count();
    for (uint64_t i = limit / 3 - correction; i < limit / 3; ++i) pi -= sieve[i];

    return pi;
}


int main(int argc, char** argv) {
    if (argc <= 1) {
        std::cout << "Usage: " << argv[0] << " n\n";
        return 0;
    }

    std::cout << num_primes(std::stoi(argv[1])) << "\n";
    return 0;
}

Na minha máquina, isso é executado em 4,8 segundos para 1907000000 (1.9e9).

O código acima foi redirecionado da minha biblioteca pessoal de C ++ , então tive um avanço.

Horários oficiais

real    0m22.760s
user    0m22.704s
sys 0m0.080s

real    0m22.854s
user    0m22.800s
sys 0m0.077s

real    0m22.742s
user    0m22.700s
sys 0m0.066s

real    0m22.484s
user    0m22.450s
sys 0m0.059s

real    0m22.653s
user    0m22.597s
sys 0m0.080s

real    0m22.665s
user    0m22.602s
sys 0m0.088s

real    0m22.528s
user    0m22.489s
sys 0m0.062s

real    0m22.510s
user    0m22.474s
sys 0m0.060s

real    0m22.819s
user    0m22.759s
sys 0m0.084s

real    0m22.488s
user    0m22.459s
sys 0m0.053s

: o Dayyyum. Isso é rápido. Qual é a sua máquina?
Addison Crump

@VoteToClose Intel i5-4670k executando o Windows 7. de 64 bits
orlp

gostaria de adicionar uma explicação?
Liam

@ Liam É apenas uma peneira com qualquer número múltiplo de 2 e 3 deixado de fora da peneira.
orlp 27/02

3

C ++, 2.47215s (29 de fevereiro de 2016)

Esta é uma versão multi-thread (desleixada) da minha outra resposta.

#include <cstdint>
#include <vector>
#include <iostream>
#include <limits>
#include <cmath>
#include <array>
// uses posix ffsll
#include <string.h>
#include <algorithm>
#include <thread>

constexpr uint64_t wheel_width = 2;
constexpr uint64_t buf_size = 1<<(10+6);
constexpr uint64_t dtype_width = 6;
constexpr uint64_t dtype_mask = 63;
constexpr uint64_t buf_len = ((buf_size*wheel_width)>>dtype_width);
constexpr uint64_t seg_len = 6*buf_size;
constexpr uint64_t limit_i_max = 0xfffffffe00000001ULL;

typedef std::vector<uint64_t> buf_type;

void mark_composite(buf_type& buf, uint64_t prime,
                    std::array<uint64_t, 2>& poff,
                    uint64_t seg_start, uint64_t max_j)
{
  const auto p = 2*prime;
  for(uint64_t k = 0; k < wheel_width; ++k)
  {
    for(uint64_t j = 2*poff[k]+(k==0); j < max_j; j += p)
    {
      buf[(j-seg_start)>>dtype_width] |= 1ULL << (j & dtype_mask);
      poff[k] += prime;
    }
  }
}

struct prime_counter
{
  buf_type buf;
  uint64_t n;
  uint64_t seg_a, seg_b;
  uint64_t nj;
  uint64_t store_max;
  uint64_t& store_res;

  prime_counter(uint64_t n, uint64_t seg_a, uint64_t seg_b, uint64_t nj, uint64_t store_max,
                uint64_t& store_res) :
    buf(buf_len), n(n), nj(nj), seg_a(seg_a), seg_b(seg_b),
    store_max(store_max), store_res(store_res)
  {}

  prime_counter(const prime_counter&) = default;
  prime_counter(prime_counter&&) = default;

  prime_counter& operator =(const prime_counter&) = default;
  prime_counter& operator =(prime_counter&&) = default;

  void operator()(uint64_t nsmall_segs,
                  const std::vector<uint64_t>& primes,
                  std::vector<std::array<uint64_t, 2> > poffs)
  {
    uint64_t res = 0;
    // no new prime added portion
    uint64_t seg_start = buf_size*wheel_width*seg_a;
    uint64_t seg_min = seg_len*seg_a+5;

    if(seg_a > nsmall_segs)
    {
      uint64_t max_j = buf_size*wheel_width*nsmall_segs+(seg_a-nsmall_segs)*(buf_len<<dtype_width);
      for(size_t k = 0; k < wheel_width; ++k)
      {
        for(uint64_t i = 0; i < poffs.size() && max_j >= (2*poffs[i][k]+(k==0)); ++i)
        {
          // adjust poffs
          // TODO: might be a more efficient way
          auto w = (max_j-(2*poffs[i][k]+(k==0)));
          poffs[i][k] += primes[i]*(w/(2*primes[i]));
          if(w % (2*primes[i]) != 0)
          {
            poffs[i][k]+=primes[i];// += primes[i]*(w/(2*primes[i])+1);
          }
          /*else
          {

          }*/
        }
      }
    }

    for(uint64_t seg = seg_a; seg < seg_b; ++seg)
    {
      std::fill(buf.begin(), buf.end(), 0);
      const uint64_t limit_i = std::min<uint64_t>((((seg_len+seg_min) >= limit_i_max) ?
                                                   std::numeric_limits<uint32_t>::max() :
                                                   ceil(sqrt(seg_len+seg_min))),
                                                  store_max);
      uint64_t max_j = std::min(seg_start+(buf_len<<dtype_width), nj);
      for(uint64_t i = 0; i < primes.size() && primes[i] <= limit_i; ++i)
      {
        mark_composite(buf, primes[i], poffs[i], seg_start, max_j);
      }
      // sieve
      uint64_t val;
      const uint64_t stop = std::min(seg_min+seg_len, n);
      for(uint64_t i = ffsll(~(buf[0]))-((~buf[0]) != 0)+64*((~buf[0]) == 0);
          (val = 6ULL*(i>>1)+seg_min+2ULL*(i&1ULL)) < stop;)
      {
        if(!(buf[i>>dtype_width] & (1ULL << (i & dtype_mask))))
        {
          ++res;
          ++i;
        }
        else
        {
          uint64_t mask = buf[i>>dtype_width]>>(i&dtype_mask);
          const int64_t inc = ffsll(~mask)-((~mask) != 0)+64*((~mask) == 0);
          i += inc;
        }
      }
      seg_min += seg_len;
      seg_start += buf_size*wheel_width;
    }
    store_res = res;
  }
};

uint64_t num_primes(uint64_t n)
{
  uint64_t res = (n >= 2) + (n >= 3);
  if(n >= 5)
  {
    buf_type buf(buf_len);
    // compute and store primes < sqrt(n)
    const uint64_t store_max = ceil(sqrt(n));

    // only primes >= 5
    std::vector<uint64_t> primes;
    std::vector<std::array<uint64_t, 2> > poffs;
    primes.reserve(ceil(1.25506*store_max/log(store_max)));
    poffs.reserve(ceil(1.25506*store_max/log(store_max)));
    uint64_t seg_start = 0;
    uint64_t seg_min = 5;
    const uint64_t num_segs = 1+(n-seg_min)/seg_len;
    const uint64_t nj = (n-seg_min)/3+1;
    // compute how many small segments there are
    const uint64_t nsmall_segs = 1+(store_max-seg_min)/seg_len;
    for(uint64_t seg = 0; seg < nsmall_segs; ++seg)
    {
      std::fill(buf.begin(), buf.end(), 0);
      // mark off small primes
      const uint64_t limit_i = std::min<uint64_t>((((seg_len+seg_min) >= limit_i_max) ?
                                                   std::numeric_limits<uint32_t>::max() :
                                                   ceil(sqrt(seg_len+seg_min))),
                                                  store_max);
      uint64_t max_j = std::min(seg_start+(buf_len<<dtype_width), nj);
      for(uint64_t i = 0; i < primes.size() && primes[i] <= limit_i; ++i)
      {
        mark_composite(buf, primes[i], poffs[i], seg_start, max_j);
      }
      // sieve
      uint64_t val;
      const uint64_t stop = std::min(seg_min+seg_len, n);
      for(uint64_t i = ffsll(~(buf[0]))-((~buf[0]) != 0)+64*((~buf[0]) == 0);
            (val = 6ULL*(i>>1)+seg_min+2ULL*(i&1ULL)) < stop;)
      {
        if(!(buf[i>>dtype_width] & (1ULL << (i & dtype_mask))))
        {
          if(val <= store_max)
          {
            // add prime and poffs
            primes.push_back(val);
            poffs.emplace_back();
            poffs.back()[0] = (val*val-1)/6-1;
            if(i&1)
            {
              // 6n+1 prime
              poffs.back()[1] = (val*val+4*val-5)/6;
            }
            else
            {
              // 6n+5 prime
              poffs.back()[1] = (val*val+2*val-5)/6;
            }
            // mark-off multiples
            mark_composite(buf, val, poffs.back(), seg_start, max_j);
          }
          ++res;
          ++i;
        }
        else
        {
          uint64_t mask = buf[i>>dtype_width]>>(i&dtype_mask);
          const int64_t inc = ffsll(~mask)-((~mask) != 0)+64*((~mask) == 0);
          i += inc;
        }
      }
      seg_min += seg_len;
      seg_start += buf_size*wheel_width;
    }
    // multi-threaded sieving for remaining segments
    std::vector<std::thread> workers;
    auto num_workers = std::min<uint64_t>(num_segs-nsmall_segs, std::thread::hardware_concurrency());
    std::vector<uint64_t> store_reses(num_workers);

    workers.reserve(num_workers);
    auto num_segs_pw = ceil((num_segs-nsmall_segs)/static_cast<double>(num_workers));
    for(size_t i = 0; i < num_workers; ++i)
    {
      workers.emplace_back(prime_counter(n, nsmall_segs+i*num_segs_pw,
                                         std::min<uint64_t>(nsmall_segs+(i+1)*num_segs_pw,
                                                            num_segs),
                                         nj, store_max, store_reses[i]),
                           nsmall_segs, primes, poffs);
    }
    for(size_t i = 0; i < num_workers; ++i)
    {
      workers[i].join();
      res += store_reses[i];
    }
  }
  return res;
}

int main(int argc, char** argv)
{
  if(argc <= 1)
  {
    std::cout << "usage: " << argv[0] << " n\n";
    return -1;
  }
  std::cout << num_primes(std::stoll(argv[1])) << '\n';
}

Usa uma peneira segmentada de Eratóstenes com uma fatoração de roda de 6 para pular todos os múltiplos de 2/3. Utiliza o POSIX ffsllpara ignorar valores compostos consecutivos.

Compilar:

g++ -std=c++11 -o sieve_mt -O3 -march=native -pthread sieve_mt.cpp

horários não oficiais

Cronometrado com um Intel i5-6600k no Ubuntu 15.10, o caso 1907000000 levou 0.817s.

Horários oficiais

Para obter tempos mais precisos, cronometrei isso 100 vezes e depois dividi o tempo por 100.

real    4m7.215s
user    23m54.086s
sys 0m1.239s

Como esta e a resposta em python do @Dennis são tão próximas, eu posso alterá-las para obter resultados mais precisos.
Liam

Uau uau uau. Isso faz ainda menos sentido para mim do que CJam ou Pyth. Vou chamá-lo de monstro de troca de bits! +1
Tamoghna Chowdhury

Como um aparte, você poderia tentar o CUDA / OpenCL para acelerar a GPU? Se eu soubesse mais C, eu poderia ter.
Tamoghna Chowdhury

Sim, acho que fui um pouco excessivo com o deslocamento / mascaramento de bits: o PI não sabe se a GPGPU seria útil aqui ou não; a única área que posso ver ajudando é na pré-peneiração de primos pequenos, e mesmo assim as velocidades de transferência de dados podem ser suficientes para acabar com isso. O que ainda me vagabundos é que eu ainda estou fora por um fator de 10 ou então a partir da implementação mais rápida peneira que eu já vi
helloworld922

2

C, 2m42.7254s (28 de fevereiro de 2016)

Salvar como pi.c, compilar como gcc -o pi pi.c, executar como ./pi <arg>:

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

unsigned char p[2000000001];

int main(int argc, char **argv)
{
        unsigned int n, c, i, j;

        n = atoi(argv[1]);
        memset(p, 1, n + 1);

        p[1] = p[0] = 0;

        for (i = 2, c = 0; i <= n; i++)
        {
                if (p[i])
                {
                        c++;
                        for (j = i + i; j <= n; j += i)
                                p[j] = 0;
                }
        }

        printf("%d: %d\n", n, c);

        return 0;
}

Precisa de muita memória para rodar! Se o seu hardware não puder poupar até dois gigabytes de memória real, o programa falhará ou será executado muito lentamente por causa do thrashing do VMM e HD.

O tempo aproximado no meu hardware é de 1.239 × 10 -8 · n 1,065 s. Por exemplo, uma entrada de n = 2 × 10 9 leva cerca de 100 s para ser executada.

Horários oficiais

real    2m42.657s
user    2m42.065s
sys 0m0.757s

real    2m42.947s
user    2m42.400s
sys 0m0.708s

real    2m42.827s
user    2m42.282s
sys 0m0.703s

real    2m42.800s
user    2m42.300s
sys 0m0.665s

real    2m42.562s
user    2m42.050s
sys 0m0.675s

real    2m42.788s
user    2m42.192s
sys 0m0.756s

real    2m42.631s
user    2m42.074s
sys 0m0.720s

real    2m42.658s
user    2m42.115s
sys 0m0.707s

real    2m42.710s
user    2m42.219s
sys 0m0.657s

real    2m42.674s
user    2m42.110s
sys 0m0.730s

Isso funciona usando a peneira de eratóstenes? Eu vou cronometrar quando chegar em casa
Liam

Estou segfaulting no primeiro caso (outros correm bem). Isso acontece após ~ 1 minuto de tempo de execução. Eu adicionei uma if (p==NULL) {exit(1);}linha ao código, então não acredito que o malloc esteja falhando (também falharia no início, e não 1 minuto). Idéias sobre o que está acontecendo?
Liam

Muitos sistemas, incluindo Linux, fazem alocação otimista. Por exemplo, se você pedir 1 Gb, ele o "dará" a você, mas quando você realmente o usar, e se o sistema não conseguir encontrá-lo, ele travará. Se fosse esse o caso, provavelmente estaria travando no memset. O minuto que está demorando é o tempo gasto tentando reunir o heap em um bloco contíguo. Verifique também se o seu sistema é sizeof (bool) == 1. Se for == 4, posso reescrever isso para usar char.

Eu já verifiquei. Bool é de 1 byte. É possível pedir apenas o formulário 2 * 10 ^ 9 bytes de memória na pilha? Ou seja, declaro uma variável global que (no gcc) acredito que será iniciada como 0. Isso exigiria o uso, charembora eu ache.
Liam

11
@Liam Difícil dizer. Estouro de número inteiro assinado é um comportamento indefinido; portanto, sem olhar para o assembly gerado, é difícil prever o que o compilador fez.
Dennis

2

Julia, 1m 21.1329s

Eu gostaria de apresentar algo um pouco mais rápido, mas por enquanto, aqui está uma implementação bastante ingênua da Peneira de Eratóstenes.

function eratos(n::Int64)
    sieve = trues(n)
    sieve[1] = false
    for p = 2:isqrt(n)
        @inbounds sieve[p] || continue
        for i = 2:n÷p
            @inbounds sieve[p*i] = false
        end
    end
    return sum(sieve)
end

const x = parse(Int64, ARGS[1])

println(eratos(x))

Obtenha a versão mais recente do Julia para o seu sistema aqui . Verifique se o executável Julia está no seu caminho. Salve o código como sieve.jle execute a partir da linha de comando como julia sieve.jl N, onde Nestá a entrada.

Horários oficiais

real    1m21.227s
user    1m20.755s
sys 0m0.576s

real    1m20.944s
user    1m20.426s
sys 0m0.640s

real    1m21.052s
user    1m20.581s
sys 0m0.573s

real    1m21.328s
user    1m20.862s
sys 0m0.570s

real    1m21.253s
user    1m20.780s
sys 0m0.588s

real    1m20.925s
user    1m20.460s
sys 0m0.576s

real    1m21.011s
user    1m20.512s
sys 0m0.601s

real    1m21.011s
user    1m20.550s
sys 0m0.564s

real    1m20.875s
user    1m20.409s
sys 0m0.569s

real    1m21.703s
user    1m21.088s
sys 0m0.701s

11
Eu implementei a peneira de Atkin e minha implementação para isso é mais lenta. >: U
Alex A.

@Liam Whoa. Eu me pergunto por que os tempos oficiais são muito mais longos que os meus não oficiais. Os tempos oficiais são horríveis.
Alex A.

Bem, os horários oficiais são para todos os casos de pontuação juntos. Os não oficiais vão número por número. Além disso, meu computador provavelmente não é tão rápido quanto o seu.
Liam

@ Liam Oh, isso faz mais sentido. Dang, eu pensei que isso era decente. Oh, bem, de volta à prancheta.
Alex A.

Estou prestes a roubar o algoritmo de Dennis ... só para entender como é rápido.
Liam

2

Java, 42.663122s * (3 de março de 2016)

* isso foi programado internamente pelo programa (no computador do OP)

public class PrimeCounter
{
public static final String START_CODE="=",
TEST_FORMAT="Input = %d , Output = %d , calculated in %f seconds%n",
PROMPT="Enter numbers to compute pi(x) for (Type \""+START_CODE+"\" to start):%n",
WAIT="Calculating, please wait...%n",
WARNING="Probably won't work with values close to or more than 2^31%n",
TOTAL_OUTPUT_FORMAT="Total time for all inputs is %f seconds%n";
public static final int NUM_THREADS=16,LOW_LIM=1,HIGH_LIM=1<<28;
private static final Object LOCK=new Lock();
private static final class Lock{}
/**
 * Generates and counts primes using an optimized but naive iterative algorithm.
 * Uses MultiThreading for arguments above LOW_LIM
 * @param MAX : argument x for pi(x), the limit to which to generate numbers.
 */
public static long primeCount(long MAX){
    long ctr=1;
    if(MAX<1<<7){
        for(long i=3;i<=MAX;i+=2){
            if(isPrime(i))++ctr;
        }
    }else{
        long[] counts=new long[NUM_THREADS];
        for(int i=0;i<NUM_THREADS;++i){
            counts[i]=-1;
        }
        long range=Math.round((double)MAX/NUM_THREADS);
        for(int i=0;i<NUM_THREADS;++i){
            long start=(i==0)?3:i*range+1,end=(i==NUM_THREADS-1)?MAX:(i+1)*range;
            final int idx=i;
            new Thread(new Runnable(){
                    public void run(){
                        for(long j=start;j<=end;j+=2){
                            if(isPrime(j))++counts[idx];
                        }
                    }
                }).start();
        }
        synchronized(LOCK){
            while(!completed(counts)){
                try{
                    LOCK.wait(300);}catch(InterruptedException ie){}
            }
            LOCK.notifyAll();
        }
        for(long count:counts){
            ctr+=count;
        }
        ctr+=NUM_THREADS;
    }
    return ctr;
}

/**
 * Checks for completion of threads
 * @param array : The array containing the completion data
 */
private static boolean completed(long[] array){
    for(long i:array){
        if(i<0)return false;
    }return true;
}

/**
 * Checks if the parameter is prime or not.
 * 2,3,5,7 are hardcoded as factors.
 * @param n : the number to check for primality
 */
private static boolean isPrime(long n){
    if(n==2||n==3||n==5||n==7)return true;
    else if(n%2==0||n%3==0||n%5==0||n%7==0)return false;
    else{
        for(long i=11;i<n;i+=2){
            if(n%i==0)return false;
        }
        return true;
    }
}

/**
 * Calculates primes using the atandard Sieve of Eratosthenes.
 * Uses 2,3,5,7 wheel factorization for elimination (hardcoded for performance reasons)
 * @param MAX : argument x for pi(x)
 * Will delegate to <code>primeCount(long)</code> for MAX<LOW_LIM and to <code>bitPrimeSieve(long)</code>
 * for MAX>HIGH_LIM, for performance reasons.
 */
public static long primeSieve(long MAX){
    if(MAX<=1)return 0;
    else if(LOW_LIM>0&&MAX<LOW_LIM){return primeCount(MAX);}
    else if(HIGH_LIM>0&&MAX>HIGH_LIM){return bitPrimeSieve(MAX);}
    int n=(int)MAX;
    int sn=(int)Math.sqrt(n),ctr=2;
    if(sn%2==0)--sn;
    boolean[]ps=new boolean[n+1];
    for(int i=2;i<=n;++i){
        if(i==2||i==3||i==5||i==7)ps[i]=true;
        else if(i%2!=0&&i%3!=0&&i%5!=0&&i%7!=0)ps[i]=true;
        else ++ctr;
    }
    for(int i=(n>10)?11:3;i<=sn;i+=2){
        if(ps[i]){
            for(int j=i*i;j<=n;j+=i){
                if(ps[j]){ ps[j]=false;++ctr;}
            }
        }
    }
    return (n+1-ctr);
}
/**
 * Calculates primes using bitmasked Sieve of Eratosthenes.
 * @param MAX : argument x for pi(x)
 */
public static long bitPrimeSieve(long MAX) {
    long SQRT_MAX = (long) Math.sqrt(MAX);
    if(SQRT_MAX%2==0)--SQRT_MAX;
    int MEMORY_SIZE = (int) ((MAX+1) >> 4);
    byte[] array = new byte[MEMORY_SIZE];
    for (long i = 3; i <= SQRT_MAX; i += 2) {
        if ((array[(int) (i >> 4)] & (byte) (1 << ((i >> 1) & 7))) == 0) {
            for(long j=i*i;j<=MAX;j+=i<<1) {
                if((array[(int) (j >> 4)] & (byte) (1 << ((j >> 1) & 7))) == 0){
                    array[(int) (j >> 4)] |= (byte) (1 << ((j >> 1) & 7));
                }
            }
        }
    }
    long pi = 1;
    for (long i = 3; i <= MAX; i += 2) {
        if ((array[(int) (i >> 4)] & (byte) (1 << ((i >> 1) & 7))) == 0) {
            ++pi;
        }
    }
    return pi;
}
/**
 * Private testing and timer function
 * @param MAX : input to be passed on to <code>primeSieve(long)</code>
 */
private static long sieveTest(long MAX){
    long start=System.nanoTime();
    long ps=primeSieve(MAX);
    long end=System.nanoTime();
    System.out.format(TEST_FORMAT,MAX,ps,((end-start)/1E9));
    return end-start;
}
/**
 * Main method: accepts user input and shows total execution time taken
 * @param args : The command-line arguments
 */
public static void main(String[]args){
    double total_time=0;
    java.util.Scanner sc=new java.util.Scanner(System.in);
    java.util.ArrayList<Long> numbers=new java.util.ArrayList<>();
    System.out.format(PROMPT+WARNING);
    String line=sc.nextLine();
    while(!line.equals(START_CODE)/*sc.hasNextLine()&&Character.isDigit(line.charAt(0))*/){
        numbers.add(Long.valueOf(line));
        line=sc.nextLine();
    }
    System.out.format(WAIT);
    for(long num:numbers){
        total_time+=sieveTest(num);
    }
    System.out.format(TOTAL_OUTPUT_FORMAT,total_time/1e9);
}
}

Segue a grande tradição PPCG de código de auto-documentação (embora não no sentido literal: p).

Isso serve para provar que o Java pode ser rápido o suficiente para ser competitivo com outras linguagens de VM ao usar algoritmos semelhantes.

Executar informações

Execute-o como você teria na resposta do @ CoolestVeto, mas o meu não precisa de argumentos de linha de comando, ele pode obtê-los no STDIN.

Ajuste a NUM_THREADSconstante para configurá-lo como 2x sua contagem de núcleos nativos para obter o desempenho máximo (como observei - no meu caso, tenho 8 núcleos virtuais, portanto, é definido como 16, o OP pode querer 12 para o processador hexa-core).

Quando executei esses testes, usei o JDK 1.7.0.45 com o BlueJ 3.1.6 (o IntelliJ estava atualizando) no Windows 10 Enterpise x64 em um laptop ASUS K55VM (Core i7 3610QM, 8GB de RAM). Google Chrome 49.0 de 64 bits com 1 guia (PPCG) aberta e o QBittorrent fazendo o download de 1 arquivo estavam sendo executados em segundo plano, com 60% de uso de RAM no início da execução.

Basicamente,

javac PrimeCounter.java
java PrimeCounter

O programa o guiará pelo resto.

O tempo é feito pelo embutido do Java System.nanoTime().

Detalhes do algoritmo:

Possui 3 variantes para diferentes casos de uso - uma versão ingênua como @ CoolestVeto (mas multithread) para entradas abaixo de 2 ^ 15 e uma peneira de Eratóstenes com máscara de bit com eliminação ímpar para entradas acima de 2 ^ 28 e uma peneira normal de Eratóstenes com um Fatoração de 2/3/5/7 de roda para pré-eliminação de múltiplos.

Eu uso a peneira com máscara de bit para evitar argumentos especiais da JVM para os maiores casos de teste. Se isso puder ser feito, a sobrecarga para o cálculo da contagem na versão com máscara de bits pode ser eliminada.

Aqui está a saída:

Enter numbers to compute pi(x) for (Type "=" to start):
Probably won't work with values close to or more than 2^31
41500
24850000
40550000
99820000
660000000
1240000000
1337000000
1907000000
=
Calculating, please wait...
Input = 41500 , Output = 4339 , calculated in 0.002712 seconds
Input = 24850000 , Output = 1557132 , calculated in 0.304792 seconds
Input = 40550000 , Output = 2465109 , calculated in 0.523999 seconds
Input = 99820000 , Output = 5751639 , calculated in 1.326542 seconds
Input = 660000000 , Output = 34286170 , calculated in 4.750049 seconds
Input = 1240000000 , Output = 62366021 , calculated in 9.160406 seconds
Input = 1337000000 , Output = 66990613 , calculated in 9.989093 seconds
Input = 1907000000 , Output = 93875448 , calculated in 14.832107 seconds
Total time for all inputs is 40.889700 seconds

A saída apenas do resultado de pi (n) (sem avisos) pode economizar algum tempo, porque STDOUT é ... bem, digamos que poderia ser um pouco mais rápido.
user48538

@ zyabin101, se alguém tivesse paciência para passar pelo código, ele / ela entenderia que a latência STDOUT foi contabilizada.
Tamoghna Chowdhury

Também por tempo, eu estive enviando stdout para / dev / null
Liam

@ Liam Eu acho que você terá que fazer uma exceção no meu caso, então. Você pode ajustar o método principal para argumentos de linha de comando, mas o programa é de temporização automática de qualquer maneira. Confira de qualquer maneira. Por favor?
Tamoghna Chowdhury

Claro que eu vou. Farei isso amanhã. Se eu tiver problemas, vou fazer ping em você no chat
Liam

2

Python 3

import sys

sys.setrecursionlimit(sys.maxsize)

n = int(sys.argv[-1])

if n < 4:
    print(0 if n < 2 else n-1)
    exit()

p = [0, 0] + [True] * n

i = 0
while i < pow(n, 0.5):
    if p[i]:
        j = pow(i, 2)
        while j < n:
            p[j] = False
            j += i
    i += 1

print(sum(p) - 2)

Usa a peneira de Eratóstenes. É executado em uma média de 8.775sonde n = 10^7. Até o momento, usei o timecomando embutido . Por exemplo:

$ time python3 test.py 90
24

real    0m0.045s
user    0m0.031s
 sys    0m0.010s

É a peneira! Eu não poderia usar isso em Java porque não gostava de quanta memória uma matriz booleana usava. D:
Addison Crump

erro de memória nos casos maiores.
Liam

Quais casos? Eu acredito que eu consertei. @Liam
Zach Gates

2
@VoteToClose Então não use uma matriz booleana. Use uma matriz inteira e deslocamento / mascaramento de bits, com cada bit representando um valor booleano.
Mbomb007

AttributeError: 'module' object has no attribute 'maxint'
Dennis

1

C ++, 9.3221s (29 de fevereiro de 2016)

#include <cstdint>
#include <vector>
#include <iostream>
#include <limits>
#include <cmath>
#include <array>
// uses posix ffsll
#include <string.h>
#include <algorithm>

constexpr uint64_t wheel_width = 2;
constexpr uint64_t buf_size = 1<<(10+6);
constexpr uint64_t dtype_width = 6;
constexpr uint64_t dtype_mask = 63;
constexpr uint64_t buf_len = ((buf_size*wheel_width)>>dtype_width);

typedef std::vector<uint64_t> buf_type;

void mark_composite(buf_type& buf, uint64_t prime,
                    std::array<uint64_t, 2>& poff,
                    uint64_t seg_start, uint64_t max_j)
{
  const auto p = 2*prime;
  for(uint64_t k = 0; k < wheel_width; ++k)
  {
    for(uint64_t j = 2*poff[k]+(k==0); j < max_j; j += p)
    {
      buf[(j-seg_start)>>dtype_width] |= 1ULL << (j & dtype_mask);
      poff[k] += prime;
    }
  }
}

uint64_t num_primes(uint64_t n)
{
  uint64_t res = (n >= 2) + (n >= 3);
  if(n >= 5)
  {
    buf_type buf(buf_len);
    // compute and store primes < sqrt(n)
    const uint64_t store_max = ceil(sqrt(n));

    // only primes >= 5
    std::vector<uint64_t> primes; // 5,7,11
    std::vector<std::array<uint64_t, 2> > poffs;// {{3,0},{0,5},{8,1}};
    primes.reserve(ceil(1.25506*store_max/log(store_max)));
    poffs.reserve(ceil(1.25506*store_max/log(store_max)));
    uint64_t seg_start = 0;
    uint64_t seg_min = 5;
    constexpr uint64_t seg_len = 6*buf_size;///wheel_width;
    constexpr uint64_t limit_i_max = 0xfffffffe00000001ULL;
    const uint64_t num_segs = 1+(n-seg_min)/seg_len;
    const uint64_t nj = (n-seg_min)/3+1;
    for(uint64_t seg = 0; seg < num_segs; ++seg)
    {
      std::fill(buf.begin(), buf.end(), 0);
      // mark off small primes
      const uint64_t limit_i = std::min<uint64_t>((((seg_len+seg_min) >= limit_i_max) ?
                                                   std::numeric_limits<uint32_t>::max() :
                                                   ceil(sqrt(seg_len+seg_min))),
                                                  store_max);
      uint64_t max_j = std::min(seg_start+(buf_len<<dtype_width), nj);
      for(uint64_t i = 0; i < primes.size() && primes[i] <= limit_i; ++i)
      {
        mark_composite(buf, primes[i], poffs[i], seg_start, max_j);
      }
      // sieve
      uint64_t val;
      const uint64_t stop = std::min(seg_min+seg_len, n);
      for(uint64_t i = ffsll(~(buf[0]))-((~buf[0]) != 0)+64*((~buf[0]) == 0);
            (val = 6ULL*(i>>1)+seg_min+2ULL*(i&1ULL)) < stop;)
      {
        if(!(buf[i>>dtype_width] & (1ULL << (i & dtype_mask))))
        {
          if(val <= store_max)
          {
            // add prime and poffs
            primes.push_back(val);
            poffs.emplace_back();
            poffs.back()[0] = (val*val-1)/6-1;
            if(i&1)
            {
              // 6n+1 prime
              poffs.back()[1] = (val*val+4*val-5)/6;
            }
            else
            {
              // 6n+5 prime
              poffs.back()[1] = (val*val+2*val-5)/6;
            }
            // mark-off multiples
            mark_composite(buf, val, poffs.back(), seg_start, max_j);
          }
          ++res;
          ++i;
        }
        else
        {
          uint64_t mask = buf[i>>dtype_width]>>(i&dtype_mask);
          const int64_t inc = ffsll(~mask)-((~mask) != 0)+64*((~mask) == 0);
          i += inc;
        }
      }
      seg_min += seg_len;
      seg_start += buf_size*wheel_width;
    }
  }
  return res;
}

int main(int argc, char** argv)
{
  if(argc <= 1)
  {
    std::cout << "usage: " << argv[0] << " n\n";
    return -1;
  }
  std::cout << num_primes(std::stoll(argv[1])) << '\n';
}

Usa uma peneira segmentada de Eratóstenes com uma fatoração de roda de 6 para pular todos os múltiplos de 2/3. Utiliza o POSIX ffsllpara ignorar valores compostos consecutivos.

Pode ser acelerado potencialmente, fazendo a peneira segmentada funcionar em paralelo.

Compilar:

g++ -std=c++11 -o sieve -O3 -march=native sieve.cpp

horários não oficiais

Cronometrado com um Intel i5-6600k no Ubuntu 15.10, o caso 1907000000 levou 2.363s.

41500
4339

real    0m0.001s
user    0m0.000s
sys     0m0.000s

24850000
1557132

real    0m0.036s
user    0m0.032s
sys     0m0.000s

40550000
2465109

real    0m0.056s
user    0m0.052s
sys     0m0.000s

99820000
5751639

real    0m0.149s
user    0m0.144s
sys     0m0.000s

660000000
34286170

real    0m0.795s
user    0m0.788s
sys     0m0.000s

1240000000
62366021

real    0m1.468s
user    0m1.464s
sys     0m0.000s

1337000000
66990613

real    0m1.583s
user    0m1.576s
sys     0m0.004s

1907000000
93875448

real    0m2.363s
user    0m2.356s
sys     0m0.000s

Horário Oficial

real    0m9.415s
user    0m9.414s
sys 0m0.014s

real    0m9.315s
user    0m9.315s
sys 0m0.013s

real    0m9.307s
user    0m9.309s
sys 0m0.012s

real    0m9.333s
user    0m9.330s
sys 0m0.017s

real    0m9.288s
user    0m9.289s
sys 0m0.012s

real    0m9.319s
user    0m9.318s
sys 0m0.015s

real    0m9.285s
user    0m9.284s
sys 0m0.015s

real    0m9.342s
user    0m9.342s
sys 0m0.014s

real    0m9.305s
user    0m9.305s
sys 0m0.014s

real    0m9.312s
user    0m9.313s
sys 0m0.012s
Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.