Ciclos na codificação de execução


26

Considere alguma sequência binária, usando 1e 2, por exemplo:

1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1 ...

Vamos anotar os comprimentos de execução disso:

1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1 ...
_  _  ____  ____  _  _  _  ____
1, 1, 2,    2,    1, 1, 1, 2,   ...

Neste caso, temos outra sequência binária. Obviamente, isso não é garantido (por exemplo, se repetirmos o processo, a terceira execução seria 3), mas vamos supor que sim.

Agora, a questão é: podemos encontrar uma sequência tal que a aplicação desse tipo de codificação de execução várias vezes nos devolva a sequência original? Para um comprimento de ciclo de 1 (isto é, um ponto fixo dessa transformação), encontramos a sequência Oldenburger-Kolakoski (entrada OEIS A0000002 ):

1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, ...

(Na verdade, existe outra solução: também podemos omitir a liderança 1.)

Que tal um ciclo de comprimento 2? Isso também é possível! As duas sequências a seguir são a lista de comprimentos de execução uma da outra:

1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, ...
2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, ...

(Essas são as entradas OEIS A025142 e A025143 . Esta é a única solução.)

Podemos encontrar um ciclo de comprimento 3? Claro, aqui cada sequência é a codificação de execução da próxima (e a terceira é a codificação de execução da primeira):

1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, ...
1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, ...
2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, ...

Nesse caso, há uma outra solução. Acontece que podemos encontrar esse ciclo para cada duração do ciclo. De fato, o número de ciclos distintos de comprimento n é dado pela entrada OEIS A001037 (isso não conta a escolha arbitrária de qual sequência de um ciclo é considerada a primeira).

Curiosidade: Por mais improvável que pareça, esse desafio foi inspirado pelo estudo do mapa complexo f(z) = z - 1/z. Quem descobrir o que esse mapa tem a ver com esse desafio recebe um cookie.

O desafio

Dado um comprimento de ciclo k > 0e um comprimento de sequência n > 0, produz os primeiros ntermos de ksequências binárias distintas (infinitas) que formam um ciclo sob a transformação de comprimento de execução acima. Se existirem vários ciclos, você poderá produzir qualquer um deles. Cabe a você qual sequência do ciclo começar e qual direção o ciclo (para que você possa produzi-las de modo que cada sequência descreva a próxima, ou que cada sequência descreva a anterior, ciclicamente).

Você pode escrever um programa ou função, recebendo entrada via STDIN (ou alternativa mais próxima), argumento da linha de comando ou argumento da função e emitindo o resultado via STDOUT (ou alternativa mais próxima), valor de retorno da função ou parâmetro da função (saída).

A saída pode estar em qualquer formato de lista aninhado conveniente, inequívoco, de modo que a dimensão externa seja ke a dimensão interna n.

Aplicam-se as regras de padrão .

Exemplos adicionais

Aqui estão alguns exemplos. Mas como eu disse, as soluções não são únicas, portanto, suas próprias soluções podem diferir e ainda estar corretas. Talvez isso ajude você a encontrar uma solução. Cada exemplo é k nseguido pelas seqüências, de modo que cada linha descreve o próximo (ciclicamente):

4 20
1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2
2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1
2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1
1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1

5 6
2, 2, 1, 2, 2, 1
1, 1, 2, 2, 1, 2
2, 1, 2, 2, 1, 1
1, 1, 2, 1, 1, 2
2, 1, 2, 2, 1, 2

8 20
2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2
1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1
2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2
2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2
1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1
2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2
1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1
2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1

13 50
1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1
1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1
1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2
1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2
1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2
1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2
2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1
1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1
1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1
1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1
1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2
1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1
1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1

Observe que nem todas as linhas nas duas últimas saídas diferem, embora elas eventualmente sejam ngrandes o suficiente.

Perguntas relacionadas


1
Podemos gerar uma lista de geradores?
CalculatorFeline

@CatsAreFluffy Não, desculpe. (Talvez da próxima vez ...)
Martin Ender

Respostas:


6

CJam (41 bytes)

{Ma*{1:Bm<{1+ee{(1&B^)+}%e~A<0:B;}%}@:A*}

Esta é uma função anônima que recebe entrada na pilha na ordem n ke deixa a saída na pilha. Demonstração online

A idéia básica é começar com uma coluna de palavras Lyndon [2 1 1 1 ...]e estender iterativamente à direita, com base no conhecimento do elemento inicial de cada linha e da alternância que podemos decodificar em comprimento e obter mais elementos.


3

Haskell, 72 bytes

~(a:b)?c=c:[c|a>1]++b?(3-c)
k!n=take k$take n<$>last(k!n)?2:map(?1)(k!n)

Demo:

*Main> 4!20
[[2,1,1,2,2,1,2,2,1,2,1,1,2,1,1,2,2,1,2,1],[1,1,2,1,2,2,1,1,2,1,1,2,2,1,2,2,1,2,1,1],[1,2,1,1,2,1,1,2,2,1,2,1,1,2,1,2,2,1,1,2],[1,2,2,1,2,1,1,2,1,2,2,1,1,2,1,1,2,1,2,2]]

1
Bom trabalho, finalmente! :) Você se importaria de adicionar uma explicação para quem não tem Haskell? :)
Martin Ender
Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.