Há uma formiga no meu cubo de Rubik


44

Um Cubo de Rubik 3 × 3 × 3 padrão e resolvido possui 6 faces de cores diferentes, onde cada face é uma grade de quadrados 3 × 3 de uma cor. A face branca é oposta ao amarelo, o vermelho oposto a laranja, o azul oposto a verde e, quando o branco aponta para cima, o vermelho fica à esquerda do azul:

Layout do cubo de Rubik

Imagine uma formiga sentada no quadrado central do rosto branco, de frente para o rosto vermelho. Você pode dar a ele 3 comandos:

  • Avançar ( ^) - dê um passo na direção em que ele está voltado para o próximo quadrado da grade, passando por cima de uma borda do cubo, se necessário.
  • Direita ( >) - gire para a direita (sentido horário) 90 °, permanecendo no mesmo quadrado da grade.
  • Esquerda ( <) - gire para a esquerda (sentido anti-horário) 90 °, permanecendo no mesmo quadrado da grade.

Dada uma lista arbitrária de comandos, encontre as cores dos quadrados que a formiga visita (sem incluir o quadrado inicial branco).

Por exemplo, a sequência de comandos ^^>^^<^^^tem um caminho parecido com este:

caminho de exemplo

As cores dos quadrados da grade visitados em ordem, sem contar o quadrado inicial, são white red red green green green yellow, ou são wrrgggy.

Escreva um programa ou função que capte uma sequência de caracteres de comando <^>e imprima ou retorne uma sequência de caracteres wyrobg(branco, amarelo, vermelho laranja, azul, verde) que corresponda ao caminho da formiga sobre o cubo.

O código mais curto em bytes vence. O desempatador é a resposta anterior.

Notas

  • O cubo está no ar e a formiga possui pulvilos eficazes, para que ele possa atravessar todo o cubo.
  • O cubo sempre permanece em seu estado resolvido.
  • A cor de um quadrado é registrada somente após o movimento no quadrado, não na rotação. O quadrado branco inicial não deve ser gravado.
  • Uma única nova linha à direita opcional pode estar presente na entrada e / ou saída.

Casos de teste

input : output
[empty string] : [empty string]
^ : w
< : [empty string]
> : [empty string]
><><<<>> : [empty string]
>^ : w
<<^> : w
^<^<^<^< : wwww
^^ : wr
<^^ : wb
>><<<<^^ : wo
<^^^<^^^^<>^>^^>^ : wbbboooggyo
^^^^^^^^^^^^^^ : wrrryyyooowwwr
<<<^<^>^<^<^<^>^^^^<^>>>>>^^<^>^^<^>^>^>^>< : wwgrwgggoooobbbbyrby
^^>^^<^^^ : wrrgggy


2
@ MartinBüttner As formigas têm seis pernas, os cubos têm seis lados. <shrug> Eu não sei ...
Trauma digital

4
Este não é um desafio inicial para o golfe ... Estou perdendo a cabeça com um sistema de coordenadas que não é codificado.
Matt

2
@DigitalTrauma Este desafio está gritando por uma resposta Hexagony :-)
Luis Mendo

1
Estou tão perto do pior código do PowerShell que você já viu.
Matt

Respostas:


18

Perl, 156 143 134 128 127 125 120 119 117 113 109 bytes

Inclui +1 para -p

Execute com a string de controle no STDIN, por exemplo

perl -p rubic.pl <<< "^^>^^<^^^"

rubic.pl:

@1=wryobg=~/./g;s##$n=w&$&;$y+=$x-=$y+=$x,@1[0,4,2,5,3,1]=@1while--$n%9;@{$n&&--$y%3}[3,0..2]=@1;$1[$n+9]#eg

Explicação

Versão antiga:

@f=gboyrw=~/./g;s##$n=w&$&;$y+=$x-=$y+=$x,@f=@f[2,4,1,3,0,5]while--$n%9;@f=@f[0,$y=1,5,2..4]if$n&&$y--<0;$f[$n+8]#eg

O desafio desta pergunta é encontrar um sistema de coordenadas que facilite o rastreamento da posição e direção da formiga e ainda assim obter facilmente a identidade do rosto.

O sistema que escolhi foi colocar (x,y)coordenadas padrão na face em que a formiga está, de modo que a formiga esteja sempre voltada na ydireção negativa com o centro da face (0,0). Assim:

rotate right: (x',y') <- (-y,  x)
rotate left:  (x',y') <- ( y, -x)  alternatve: 3 right rotations
Step forward:   y' <- y-1

Se yjá era, -1a formiga deixará a face atual e passará para a próxima. No novo sistema de coordenadas, xmantém seu valor, mas y'passa a 1.

Isso fornece um sistema de coordenadas fácil dentro de uma face. Eu também preciso de algo para os próprios rostos. Lá eu uso uma matriz que consiste em

The face to right of the ant            g in the initial position
The face to the left of of the ant      b
The face behind the ant                 o
The face opposite to the ant            y
The face before the ant                 r
The face the ant is on                  w

Então a matriz inicial é (g,b,o,y,r,w). Mover para a próxima face corresponde à rotação dos 4 últimos elementos, portanto, passar do branco para o vermelho faz isso (g,b,w,o,y,r). Virar à direita é uma permutação dos 5 primeiros elementos a dar (o,r,b,y,g,w). Virar à esquerda é uma permutação simular, mas também pode ser feito girando à direita 3 vezes, aplicando essa permutação 3 vezes. E não girar também pode ser feito aplicando a permutação 8 vezes. De fato, virar à direita também pode ser feito aplicando a permutação 5 vezes.

Sabendo disso, o programa é bastante simples:

@f=gboyrw=~/./g                 Set up the initial face orientation
s## ... #eg                     Process each control string character
                                {this is equivalent to s#.#...#eg because
                                the empty regex repeats the last
                                succesful regex)
$n=w&$&                         Calculate n, the number of right
                                rotations+1 modulo 9.
                                This abuses a coincidence of the control
                                characters:
                                 "<" & "w" = "4" -> 3 right rotations
                                 ">" & "w" = "6" -> 5 right rotations
                                 "^" & "w" = "V" = 0 but that is 9 mod 9
                                 so leads to 8 right rtations

$y+=$x-=$y+=$x,                 This is the same as ($x,$y)=(-$y,$x), so
                                a right rotation of the face coordinates
@f=@f[2,4,1,3,0,5]              Right rotation of the face array
   while --$n%9                 Rotate right n-1 times. After this n=0
                                If this was a step then n was effectively 0.
                                So rotate right 8 times leaving n=-9

    ... if $n                   If a step...
               $y--             ... decrease y ...
             &&$y--<0           ... but if y was already negative ...
@f=@f[0,$y=1,5,2..4]            ... change face and set y to 1

$f[$n+8]                        return the last element (current face)
                                if this was a step, otherwise empty

Portanto, para essa última declaração, as rotações levam à string vazia e os passos adiante levam à face atual. Portanto, $_é substituído pelos rostos visitados em cada etapa.


Se eu entendo o que está acontecendo aqui, essa parte @1é um abuso incrível do que parece ser um recurso horrível da linguagem.
Não que Charles

@NotthatCharles Sim, é exatamente tão ruim quanto parece. Em programas perl graves, a primeira coisa a fazer é desativar esse recurso use strict. Obrigado pelo módulo 3 por sinal.
Ton Hospel

12

Braquilog , 287 bytes

:1:2222:"w":"y":["r":"b":"o":"g"]{h""|[L:I:N:A:B:[C:D:E:F]]hhM("^",(NhI,CwX,EY,B:D:A:FZ;AwX,BY,[C:D:E:F]Z),NhJ,(I1,2313O;I2,(Nh2,N$($(O;Nh1,2222O;Nbh1,3223O;3322O);3322N,2332O;3223N,2233O;2233N,3132O;2332N,3231O);IJ,AX,BY,(M"<",[C:D:E:F]$(Z,N$(O;M">",[C:D:E:F]$)Z,N$)O)),Lb:J:O:X:Y:Z:1&}

Espera que uma string contenha os movimentos como Entrada e nenhuma Saída, por exemplo brachylog_main("^^>^^<^^^",_)., wrrgggygravará em STDOUT.

Explicação

§ There are 3 types of tiles we can be on: centers (noted 1), edges (2) and corners (3)
§ When we are on a tile, we can denote adjacent tiles in order: front, left, back, right
§ Similarly, we can denote the adjacent colors depending on the current one of the face
§
§ We start on the center (1) of face white ("w"). The adjacent tiles are 4 edges (2222)
§ The adjacent colors of white are red, blue, orange and green ("r":"b":"o":"g")
§ Yellow is opposite of white ("y")

§ We pass those initial conditions in an array, with the sequence of moves as first
§ element, as input to subpredicate 1


:1:2222:"w":"y":["r":"b":"o":"g"]{...}


§ SUB-PREDICATE 1

h""  § If the sequence of moves is empty, terminate the recursion
|    § Else...

§ Here are the variables' names of the input (which correspond to what's described in
§ the first few paragraphs)
[L:I:N:A:B:[C:D:E:F]]

§ If the move is "^"...
hhM("^",

   § The only way we change from one face to another is if the tile we end up on is of the
   § same type as the tile we started from
   (NhI,      § If this is the case
    CwX,      § Then write the color of the face we're facing, this face will now be the
              § current color
    EY,       § The third color in the list is now the opposite color
    B:D:A:FZ  § The opposite color is now the one we face, the color behind us (the third
              § in the list) is the one we were on, and the other 2 don't change

    § If the tiles are not the same type, then we don't change color
    ; 
    AwX,         § Write the current color, this will remain the color
    BY,          § Opposite color stays the same
    [C:D:E:F]Z), § Other colors stay in the same order since we moved forward
    NhJ,              § The new tile type is the one we were facing
       (I1,2313O;     § If we were on the center, then the adjacent tiles are 2313
       I2,            § Else if we were on an edge
         (Nh2,N$($(O; § then if we were facing an edge (changed face), then the new types
                      § of tiles are a double circular permutation of the previous types
         Nh1,2222O;   § Else if we were facing a center, then the new tiles are 2222
         Nbh1,3223O;  § Else (corners) if the tile to our left is the center, then 3223
         3322O)       § Else 3322

       ;              § Else if we were on a corner
       3322N,2332O;   § then one of those 4 possibilities applies
       3223N,2233O;
       2233N,3132O;
       2332N,3231O)

§ Else if the move is NOT "^"
;
IJ,AX,BY,         § We stay on the same type of tile, same color, same opposite color
(M"<",            § if the move is "turn left"
    [C:D:E:F]$(Z, § Then we circular permute the adjacent colors to the left
    N$(O          § we also circular permute the adjacent tiles to the left
;M">",            § Else if the move is "turn right"
    [C:D:E:F]$)Z, § Then we do the same but with right circular permutations
    N$)O)
),
Lb:J:O:X:Y:Z:1&   § Recursively call sub-predicate 1 with the new input, and the next move

Código SWI-Prolog equivalente

Se você não quiser se preocupar com o compilador do Brachylog, poderá executar esta solução no SWI-Prolog usando o seguinte código (é isso que é gerado pelo compilador do Brachylog):

:- style_check(-singleton).

:- use_module(library(clpfd)).

brachylog_main(Input,Output) :-
    1=1,
    brachylog_subpred_1([Input,1,2222,"w","y",["r","b","o","g"]],V0).


brachylog_subpred_1(Input,Output) :-
    1=1,
    brachylog_head(Input, "").

brachylog_subpred_1(Input,Output) :-
    1=1,
    [L,I,N,A,B,[C,D,E,F]] = Input,
    brachylog_head([L,I,N,A,B,[C,D,E,F]], V0),
    brachylog_head(V0, M),
    ( 1=1,
    "^" = M,
    ( 1=1,
    brachylog_head(N, I),
    brachylog_write(C, X),
    Y = E,
    Z = [B,D,A,F]
    ;
    1=1,
    brachylog_write(A, X),
    Y = B,
    Z = [C,D,E,F]
    ),
    brachylog_head(N, J),
    ( 1=1,
    I = 1,
    O = 2313
    ;
    1=1,
    I = 2,
    ( 1=1,
    brachylog_head(N, 2),
    brachylog_math_circular_permutation_left(N, V1),
    brachylog_math_circular_permutation_left(V1, O)
    ;
    1=1,
    brachylog_head(N, 1),
    O = 2222
    ;
    1=1,
    brachylog_behead(N, V2),
    brachylog_head(V2, 1),
    O = 3223
    ;
    1=1,
    O = 3322
    )
    ;
    1=1,
    N = 3322,
    O = 2332
    ;
    1=1,
    N = 3223,
    O = 2233
    ;
    1=1,
    N = 2233,
    O = 3132
    ;
    1=1,
    N = 2332,
    O = 3231
    )
    ;
    1=1,
    J = I,
    X = A,
    Y = B,
    ( 1=1,
    "<" = M,
    brachylog_math_circular_permutation_left([C,D,E,F], Z),
    brachylog_math_circular_permutation_left(N, O)
    ;
    1=1,
    ">" = M,
    brachylog_math_circular_permutation_right([C,D,E,F], Z),
    brachylog_math_circular_permutation_right(N, O)
    )
    ),
    brachylog_behead(L, V3),
    brachylog_call_predicate([V3,J,O,X,Y,Z,1], V4).



brachylog_behead(X,Y) :-
    string(X),!,
    sub_string(X, 1, _, 0, Y)
    ;
    number(X),!,
    number_codes(X,[_|T]),
    catch(number_codes(Y,T),_,Y=[])
    ;
    atom(X),!,
    atom_codes(X,[_|T]),
    atom_codes(Y,T)
    ;
    X = [_|Y].

brachylog_math_circular_permutation_left(X,Y) :-
    string(X),!,
    string_codes(X,C),
    C = [H|T],
    append(T,[H],D),
    string_codes(Y,D)
    ;
    number(X),!,
    number_codes(X,C),
    C = [H|T],
    append(T,[H],D),
    number_codes(Y,D)
    ;
    atom(X),!,
    atom_codes(X,C),
    C = [H|T],
    append(T,[H],D),
    atom_codes(Y,D)
    ;
    X = [H|T],!,
    append(T,[H],Y).

brachylog_math_circular_permutation_right(X,Y) :-
    string(X),!,
    string_codes(X,C),
    append(T,[H],C),
    D = [H|T],
    string_codes(Y,D)
    ;
    number(X),!,
    number_codes(X,C),
    append(T,[H],C),
    D = [H|T],
    number_codes(Y,D)
    ;
    atom(X),!,
    atom_codes(X,C),
    append(T,[H],C),
    D = [H|T],
    atom_codes(Y,D)
    ;
    append(T,[H],X),
    Y = [H|T].

brachylog_call_predicate(X,Y) :-
    reverse(X,R),
    R = [N|RArgs],
    number(N),
    reverse(RArgs, Args),
    (
    N = 0,!,
    Name = brachylog_main
    ;
    atom_concat(brachylog_subpred_,N,Name)
    ),
    (
    Args = [UniqueArg],!,
    call(Name,UniqueArg,Y)
    ;
    call(Name,Args,Y)
    ).

brachylog_write(X,Y) :-
    X = [List,Format],
    is_list(List),
    string(Format),!,
    format(Format,List),
    flush_output,
    Y = List
    ;
    write(X),
    flush_output,
    Y = X.

brachylog_head(X,Y) :-
    string(X),!,
    sub_string(X, 0, 1, _, Y)
    ;
    number(X),!,
    number_codes(X,[A|_]),
    number_codes(Y,[A])
    ;
    atom(X),!,
    atom_codes(X,[A|_]),
    atom_codes(Y,[A])
    ;
    X = [Y|_].

4

PowerShell, 882 bytes

Uso

Salve o código em um script e chame-o assim na linha de comando. Supondo que o diretório de trabalho seja o diretório atual.

.\WalkingAntcg.ps1 "^^>^^<^^^"

Código

$o=[char[]]"grbowy";[int]$c=4;[int]$global:x=1;[int]$global:y=1;[int]$f=1;[int]$n=5;
$u={$c=$args[0];$1="341504251435240503210123".Substring($c*4,4);$2=$1*2-match".$($args[1]).";$3=$Matches[0];"$3";"012345"-replace([char[]]"$1$c"-join"|")}
function t{param($o,$x,$y)if($o){switch($y){0{switch($x){0{$x=2}1{$y=1;$x=2}2{$y=2}}}1{switch($x){0{$y=0;$x=1}2{$y=2;$x=1}}}2{switch($x){0{$x=0;$y=0}1{$x=0;$y=1}2{$x=0}}}}}else{switch($y){0{switch($x){0{$y=2}1{$x=0;$y=1}2{$x=0}}}1{switch($x){0{$y=2;$x=1}2{$y=0;$x=1}}}2{switch($x){0{$x=2}1{$x=2;$y=1}2{$y=0;$x=2}}}}}$global:x=$x;$global:y=$y}
([char[]]$args[0]|%{switch($_){'^'{$global:y++;if($global:y-eq3){$global:y=0;$c="$f";$f="$n";$z=&$u $c $f;$f,$n="$($z[0][1])","$($z[1])"}$o[$c]}
"<"{$z=&$u $c $f;$f,$n="$($z[0][0])","$($z[1])";t 0 $global:x $global:y}
">"{$z=&$u $c $f;$f,$n="$($z[0][2])","$($z[1])";t 1 $global:x $global:y}}})-join""

Menos código de golfe com explicação

# Recorded order of cube colours and their indexes
# Green=0,Red=1,Blue=2,Orange=3,White=4,Yellow=5
$o=[char[]]"grbowy"
[int]$c=4   # Ant is currently on this colour
[int]$global:x=1   # X coordinate on this face
[int]$global:y=1   # Y coordinate on this face
[int]$f=1   # Colour that the Ant is facing
[int]$n=5   # Colour beyond that the ant is facing.
# If the ant moves of this cube to the next this value becomes the one he is facing.
# It is also the only colour not neighboring this current colour.

# Anonymous function that will return the colour facing left and right
$u = {
# Cube relationships relative to position. Groups of 4 colours that are important given the order...
# Green=0-3,Red=4-7,Blue=8-11,Orange=12-15,White=16-19,Yellow=20-23
# Get the colours surrounding the current colour we are on and the surrounding ones
# String version: "owrygwbyrwoybwgygrbogrbo"
$c=$args[0]
#  "341504251435240501230123"
$1="341504251435240503210123".Substring($c*4,4)
# double the string so that we can get the characters before and after the facing colour reliably
# Assign the output to surpress a boolean. $2 is not used. Shorter than a cast
$2=$1*2-match".$($args[1]).";$3=$Matches[0]
# Return two values. First is the colours to the left,current and right as a string.
# Second is the colour beyond the one we are facing. If we were to move forward two blocks
# we would end up on this colour
"$3";"012345"-replace([char[]]"$1$c"-join"|")
}

# function that will transpose the ants position based on right/left rotation.
# Using current x and y determines what the tranposed values are and return them.
function t{
    param($o,$x,$y)
    # X = $1; Y = $2
    # Left 0 Right 1
    if($o){
        # Right Transpose
        # All values are hard coded to rotate to their new positions
        switch($y){
            0{switch($x){0{$x=2}1{$y=1;$x=2}2{$y=2}}}
            # 1,1 is in the center and nothing changes
            1{switch($x){0{$y=0;$x=1}2{$y=2;$x=1}}}
            2{switch($x){0{$x=0;$y=0}1{$x=0;$y=1}2{$x=0}}}
        }
    }else{
        # Left Transpose
        # All values are hard coded to rotate to their new positions
        switch($y){
            0{switch($x){0{$y=2}1{$x=0;$y=1}2{$x=0}}}
            # 1,1 is in the center and nothing changes
            1{switch($x){0{$y=2;$x=1}2{$y=0;$x=1}}}
            2{switch($x){0{$x=2}1{$x=2;$y=1}2{$y=0;$x=2}}}
        }

    }
    # Update global variables with the ones from this function
    $global:x=$x
    $global:y=$y
}

# Process each character passed by standard input
([char[]]$args[0]|%{
    switch($_){
        # Moving Forward
        '^'{
        $global:y++
        if($global:y-eq3){
            # We have walked of the colour onto the next one. Update coordinates to the next colour
            $global:y=0
            $c="$f"
            $f="$n"
            # Get the new neighboring colour indexes
            $z=&$u $c $f
            $f,$n="$($z[0][1])","$($z[1])"
        }  
        # Output the colour we have just moved to.
        $o[$c]
        }
        # Turn Left
        "<"{$z=&$u $c $f;$f,$n="$($z[0][0])","$($z[1])"
        # Transpose the ants location by passing current location to the transposition function.
        t 0 $global:x $global:y
        }
        # Turn Right
        ">"{$z=&$u $c $f;$f,$n="$($z[0][2])","$($z[1])"
        # Transpose the ants location by passing current location to the transposition function.
        t 1 $global:x $global:y
        }
    }
}) -join ""
# Line above converts the output to a single string. 

Utilizando muitas variáveis ​​de letra única usadas para registrar o estado atual da formiga (cor, posição e orientação). A formiga está sempre voltada para cima. Quando uma instrução de rotação é lida, o cubo é transposto nessa direção. Matrizes de transposição codificadas permanentemente usadas para determinar a nova posição com base na posição atual.

O código satisfaz todos os exemplos em questão.


Isso pode ser mais praticado, mas funciona agora, por isso preciso tentar remover parte da repetição agora.
Matt

3

Tcl / Tk, 422 bytes

rename split S
array se {} [S wyywroorgbbg {}]
proc R a {foreach x [lassign $a y] {lappend b $x}
lappend b $y}
proc < {V H} {set ::H $V
set ::V [lreverse [R $H]]}
proc > {V H} [string map {V H H V} [info b <]]
proc ^ {V H} {
lassign $V x
lassign [set ::V [R $V]] y
set ::H [string map "$x $y $::($x) $::($y)" $::H]
puts -nonewline $y}
set V [S wwrrryyyooow {}]
set H [S wwgggyyybbbw {}]
foreach p [S {*}$argv {}] {$p $V $H}

Infelizmente, não posso diminuí-lo. Versão não ofuscada:

array set opposites [split wyywroorgbbg {}]

proc lrotate xs {
  foreach x [lassign $xs y] {
    lappend ys $x
  }
  lappend ys $y
}

proc < {V H} {
  set ::H $V
  set ::V [lreverse [lrotate $H]]
}

proc > {V H} {
  set ::H [lreverse [lrotate $V]]
  set ::V $H
}

proc ^ {V H} {
  lassign $V x
  lassign [set ::V [lrotate $V]] y
  set ::H [string map [list $x $y $::opposites($x) $::opposites($y)] $::H]
  puts -nonewline $y
}

set V [split wwrrryyyooow {}]
set H [split wwgggyyybbbw {}]
foreach p [split {*}$argv {}] {$p $V $H}
puts {}

Ele funciona mantendo uma lista de cores de células horizontais e verticais. ^ <e> são todos os comandos que permutam adequadamente as listas. A célula atual é a primeira em cada lista.


3

Ruby, 132

m=?w
g="bgoyr"
x=z=1
gets.bytes{|c|(m,g[2,3]=g[4],m+g[2,2]if(x+=1)%3<1
$><<m)if 93<c.upto(64){x,z,g=2-z,x,g[4]+g[2]+g[0]+g[3]+g[1]}}

Infelizmente, esse sistema de posições é muito semelhante a outras respostas disponíveis. xe zacompanhe sua posição na face atual, +xsendo a direção da viagem. O avanço é sempre x+=1, e os limites de cada face são divisíveis por 3 (não nos importamos com o número, apenas seu módulo com 3).

m é a face atual (isso salva alguns bytes)

gé organizado [left, right, behind, opposite, front]de modo que nós não precisamos de mudança g[0..1]em^

<é feito simplesmente fazendo >três vezes.


2

Java, 619 605 bytes

Bem, aqui não vai nada ...

Pelo menos ele venceu o PowerShell!

-14 bytes graças a @KevinCruijssen

String t(String f){int h[]={0,0,1},p[]={0,2,0},n[],i,s,r;String o="",d[]="w,g,r,b,o,y".split(",");for(char c:f.toCharArray()){r=r(p);n=h;if(c==94){s=3;for(i=0;i<3;i++)if(h[i]==p[i]&p[i]!=0){if(r==0)n[1]=-1;if(r==1)n[0]=1;if(r==2)n[2]=-1;if(r==3)n[0]=-1;if(r==4)n[2]=1;if(r==5)n[1]=1;s=i;break;}i=0;for(int a:n)p[i++]+=a;if(s<3)h[s]=0;o+=d[r(p)];}s=r>-1&r<2?2:r>2&r<5?1:0;i=r==3|r==5?2:r>0&r<3?1:0;r=h[s];if(c==62){if(r==0){h[s]=h[i];h[i]=0;}else{h[i]=-r;h[s]=0;}}if(c==60){if(r==0){h[s]=-h[i];h[i]=0;}else{h[i]=r;h[s]=0;}}}return o;}int r(int[] p){return p[0]>1?3:p[0]<-1?1:p[1]>1?0:p[1]<-1?5:p[2]>1?2:4;}

Explicação:

Ao contrário de algumas das outras respostas, que usavam um sistema de coordenadas 2-d, usei um sistema 3-d para rastrear onde a formiga estava.

A direção também foi mantida em 3-d para facilitar a troca de lados e o movimento.

Cada face tinha uma das coordenadas, x, y ou z, definida como 2 (ou -2 para a face oposta) para indicar qual era a face.

A troca de faces foi realizada verificando se a formiga estava prestes a disparar (posição e cabeçalho têm um valor igual, mas não 0), verifique se "cairia" na diagonal para a próxima e altere o cabeçalho para não ser -diagonal. Isso foi surpreendentemente fácil.

Virar era mais difícil. Certificar-se de que sempre seguisse a mesma direção exigia uma declaração if-else extra na verificação de cada caractere, custando-me muitos bytes. Além disso, os eixos "para cima" e "direito" precisavam ser codificados para cada lado.

Código ungolfed

(Inalterado da edição anterior para maior clareza no método)

private static String[] sides="w,g,r,b,o,y".split(",");
public static String traverse(String commands)
{
  int[] heading = {0,0,1};
  int[] pos = {0,2,0};
  int[] newheading;
  int i;
  int saved;
  String out = "";
  for(char command:commands.toCharArray())
  {
     if(command=='^')
     {
        newheading=heading;
        saved=3;
        for(i=0;i<3;i++)
        {
           if(heading[i]==pos[i]&pos[i]!=0)
           {
              saved=determineSide(pos);
              if(saved==0)newheading[1]=-1;
              if(saved==1)newheading[0]=1;
              if(saved==2)newheading[2]=-1;
              if(saved==3)newheading[0]=-1;
              if(saved==4)newheading[2]=1;
              if(saved==5)newheading[1]=1;
              saved=i;
              break;
           }
        }
        i=0;
        for(int c:newheading)
        {
           pos[i++]+=c;
        }
        if(saved<3)heading[saved]=0;
        out+=sides[determineSide(pos)];
     }
     newheading=getPlane(determineSide(pos));
     if(command=='>')
     {
        saved=heading[newheading[0]];
        if(saved==0)
        {
           heading[newheading[0]]=heading[newheading[1]];
           heading[newheading[1]]=0;
        }
        else
        {
           heading[newheading[1]]=-saved;
           heading[newheading[0]]=0;
        }
     }
     if(command=='<')
     {
        saved=heading[newheading[0]];
        if(saved==0)
        {
           heading[newheading[0]]=-heading[newheading[1]];
           heading[newheading[1]]=0;
        }
        else
        {
           heading[newheading[1]]=saved;
           heading[newheading[0]]=0;
        }
     }
  }
  return out;
}
public static int determineSide(int[] pos)
{
  return pos[0]==2?3:pos[0]==-2?1:pos[1]==2?0:pos[1]==-2?5:pos[2]==2?2:4;
}
public static int[] getPlane(int side)
{
  int[] out=new int[2];
  out[0]=side==0|side==1?2:side==3|side==4?1:0;
  out[1]=side==3|side==5?2:side==1|side==2?1:0;
  //side==0?{2,0}:side==1?{2,1}:side==2?{0,1}:side==3?{1,2}:side==4?{1,0}:{0,2};
  return out;
}

1
Isso dói ... Eu juro tentar jogar golfe agora! :)
Mt

1
Eu sei que isso foi publicado há mais de um ano, mas existem algumas coisas pequenas no golfe: d[]={"w","g","r","b","o","y"}-> "w,g,r,b,o,y".split(",")(-1 byte); 2x '^'-> 94(-2 bytes); 3x ==0-> <1(-3 bytes); 2x ==1-> <2(-2 bytes); etc para ==2, ==3, ==4, ==5.
Kevin Cruijssen

@KevinCruijssen Obrigado pelas dicas!
Blue
Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.