Imprimir espiral NxN de números ascendentes [fechado]


12

Os números devem ser impressos com zeros à esquerda em um campo com comprimento = (número de dígitos de N ^ 2).

Entrada (N):

4

Resultado:

01 12 11 10
02 13 16 09
03 14 15 08
04 05 06 07

Estou interessado no algoritmo e na limpeza da implementação. Portanto, o espaço em branco não conta e o limite superior para N é 42.


sim de acordo comigo.
Wile E. Coyote

De acordo com meus cálculos, o comprimento do campo é L = floor(log10(N^2)) + 1correto?
Hristo Hristov

Qual é o limite superior N?

Estou interessado no algoritmo e na limpeza da implementação. Então, vamos não se preocupar com números muito grandes e definir o limite superior de N a 42 :)
Hristo Hristov

Isso foi motivado pela espiral de Ulam ? (embora a sua espiral descendente está se visto como começando no interior)
SMCI

Respostas:


6

Pitão

n=input()

matrix=[[j+1]*n for j in range(n)]

x=y=0
for i in range(n)[::-2]:
    x+=i*4;y+=1

    for j in range(i):
        matrix[j+y-1][y]=x+j

    matrix[y-1][y:y+i]=range(x,x-i,-1)

    R=matrix[n-y][y-1]+1
    matrix[n-y][y:n-y+1]=range(R,R+i)

    for j in range(y,y+i-1):
        matrix[j][n-y]=matrix[j-1][n-y]-1

for row in matrix:
    print ' '.join(`r`.zfill(len(`n*n`)) for r in row)
  • Uma abordagem que pré-calcula os números dos cantos. Por exemplo, para a caixa 9x, 32 56 72 80, que é (n-1) * 4, em que n é o tamanho da caixa (9,7,5,3) nesse caso.
  • O lado direito desses números é 1, e de cima para baixo é 1+, então, basicamente, gere da esquerda para a direita, de cima para baixo, de baixo para a direita, da direita para o lado superior.

insira a descrição da imagem aqui

$ echo 9 | python codegolf-769-me.py
01 32 31 30 29 28 27 26 25
02 33 56 55 54 53 52 51 24
03 34 57 72 71 70 69 50 23
04 35 58 73 80 79 68 49 22
05 36 59 74 81 78 67 48 21
06 37 60 75 76 77 66 47 20
07 38 61 62 63 64 65 46 19
08 39 40 41 42 43 44 45 18
09 10 11 12 13 14 15 16 17

Outros testes

$ echo 2 | python codegolf-769-me.py
1 4
2 3

$ echo 5 | python codegolf-769-me.py
01 16 15 14 13
02 17 24 23 12
03 18 25 22 11
04 19 20 21 10
05 06 07 08 09

$ echo 10 | python codegolf-769-me.py
001 036 035 034 033 032 031 030 029 028
002 037 064 063 062 061 060 059 058 027
003 038 065 084 083 082 081 080 057 026
004 039 066 085 096 095 094 079 056 025
005 040 067 086 097 100 093 078 055 024
006 041 068 087 098 099 092 077 054 023
007 042 069 088 089 090 091 076 053 022
008 043 070 071 072 073 074 075 052 021
009 044 045 046 047 048 049 050 051 020
010 011 012 013 014 015 016 017 018 019

5

Em Ruby:

N=gets.to_i

index = -N
width = N
result = []
n = 0
dir=-1

while n < N*N
        dir = (dir + 1) % 4
        dir_x, dir_y = [[0,1],[1,0],[0,-1],[-1,0]][dir]
        width -= 1 if [1,3].include?(dir)

        1.upto(width) { |m|
                n += 1
                index += dir_y * N + dir_x
                result[index] = n
        }
end

width = (N*N).to_s.size
result.each_slice(N) { |l|
        print l.map {|n| "%0#{width}d" % n }.join(" "), "\n"
}

Teste:

$ ruby1.9 769.rb <<< 9
01 32 31 30 29 28 27 26 25
02 33 56 55 54 53 52 51 24
03 34 57 72 71 70 69 50 23
04 35 58 73 80 79 68 49 22
05 36 59 74 81 78 67 48 21
06 37 60 75 76 77 66 47 20
07 38 61 62 63 64 65 46 19
08 39 40 41 42 43 44 45 18
09 10 11 12 13 14 15 16 17

Uma outra solução usando cálculos daqui :

N=gets.to_i
r=[]

tr=->x,y{ x+(N-1)/2 + (y+(N-1)/2+(N-1)%2)*N }

r[tr[0,0]] = N*N

1.upto(N*N-1) { |n|
        shell = ((Math.sqrt(n)+1)/2).to_i
        leg = (n-(2*shell-1)**2)/(2*shell)
        element = (n-(2*shell-1)**2)-2*shell*leg-shell+1
        x,y = [[element,-shell],[shell,element],[-element,shell],[-shell,-element]][leg]
        r[tr[x,y]] = N*N-n
}

r.each_slice(N) {|l|
        puts l.map { |n|
                "%0#{(N*N).to_s.size}d" % (n or 0)
        }.join(" ")
}

Teste:

$ ruby1.9 769-2.rb <<< 5
01 16 15 14 13
02 17 24 23 12
03 18 25 22 11
04 19 20 21 10
05 06 07 08 09

5

No Python3:

n=int(input())
results = {}
val = 1
location = (0,0)
direction = (0,1)

def nxt():
    return (location[0]+direction[0], location[1]+direction[1])

while val<=n*n:
    if set([-1,n]).intersection(nxt()) or nxt() in results:
        direction = (direction[1],direction[0]*-1)

    results[location], location, val = str(val), nxt(), val+1

slen = len(str(n*n))
for y in range(n):
    print( *[results[(x,y)].rjust(slen,'0') for x in range(n)] )

Saída de amostra para 7:

01 24 23 22 21 20 19
02 25 40 39 38 37 18
03 26 41 48 47 36 17
04 27 42 49 46 35 16
05 28 43 44 45 34 15
06 29 30 31 32 33 14
07 08 09 10 11 12 13

editar: Uma solução recursiva - 263 bytes

def a(m,s):
 b,r,t=m-s*s+1,s-1,range
 return[[[]],[[m]]][s]if s<2 else[[b]+list(t(b+4*r-1,b+3*r-1,-1))]+[[b+y+1]+a(m,s-2)[y]+[b+3*r-y-1]for y in t(s-2)]+[list(t(b+r,b+2*r+1))]
n=int(input())
for r in a(n*n,n):
 print(*[str(x).zfill(len(str(n*n)))for x in r])

Solução agradável, verifiquei em ideone.com/u43VJ , funciona com Python3 (você pode notar isso). Obrigado!
Hristo Hristov

4

Solução Java

public static void main(String[] args) {
        int INPUT = 5;
        String[][] grid = new String[INPUT][INPUT];
        int xDirection = 0;
        int yDirection = 0;
        int flag = 1;
        for (int i = 0; i < INPUT * INPUT; i++) {
            String temp = "";
            for (int k = 0; k < (""+INPUT*INPUT).length() - ("" + (i + 1)).length(); k++) {
                temp += "" + 0;
            }
            temp += (i + 1);

            if (xDirection > INPUT-1)
                {flag=2; yDirection++; xDirection--; i--; continue;}
            else if (yDirection > INPUT -1)
                {flag=3; yDirection--; xDirection--; i--; continue;}
            else if (xDirection < 0)
                {flag=4; xDirection++; yDirection--; i--; continue;}



            if ( grid[xDirection][yDirection]==null ){
                    grid[xDirection][yDirection] = ""+temp;
            }
                else{
                if (flag ==1 ) {
                    flag=2;
                    xDirection--;
                }
                else if (flag ==2){
                    flag=3;
                    yDirection--;
                }
                else if (flag==3){
                    flag=4;
                    xDirection++;
                }
                else{
                    flag=1;
                    yDirection++;
                }
                i--;
            }
            switch(flag){
            case 1: xDirection++;break;
            case 2: yDirection++;break;
            case 3: xDirection--;break;
            case 4: yDirection--; break;
            }
        }
        for (int i = 0; i < INPUT; i++) {
            for (int k = 0; k < INPUT; k++)
                System.out.print(grid[i][k] + " ");
            System.out.println();
        }
    }

saída de amostra para entrada 10

001 036 035 034 033 032 031 030 029 028 
002 037 064 063 062 061 060 059 058 027 
003 038 065 084 083 082 081 080 057 026 
004 039 066 085 096 095 094 079 056 025 
005 040 067 086 097 100 093 078 055 024 
006 041 068 087 098 099 092 077 054 023 
007 042 069 088 089 090 091 076 053 022 
008 043 070 071 072 073 074 075 052 021 
009 044 045 046 047 048 049 050 051 020 
010 011 012 013 014 015 016 017 018 019 

Legal, eu verifiquei e funciona: ideone.com/mLoJX
Hristo Hristov

Porém, imprime informações extras, apenas a saída desejada é necessária. E será super legal se puder ser menos detalhado.
Hristo Hristov

Além disso, a função principal deve ser colocada em uma classe.
Hristo Hristov

Ah! .. esqueci de comentar os sysouts de depuração :(
Aman ZeeK Verma

talvez você possa corrigi-lo no seu código?
Hristo Hristov

4

Perl, 178 caracteres

Usa Math :: Complex e mantém a direção atual em uma variável complexa (1 / i / -1 / .i). Correr com:

$ perl -MMath::Complex spiral.pl

Coloque Nno $l.

# $l = shift;
$d=i;
$x=0;
until($s{$x}){
    $s{$x}=++$n;
    $x+=$d;
    $d*=-i if
        Re($x)==Im($x)+(Re($x)<$l/2)
        ||Re($x)==$l-1-Im($x)
}
for$y(0..$l-1){
    printf'%0'.length($l**2).'d ',$s{$_+i*$y}for 0..$l-1;
    print"\n"
}

3

C

#include<stdio.h>
#include<math.h>

int main() {
    int A[42][42],i,j,N,c=1,k;
    scanf("%d",&N);
    for (i = 0, j = N - 1 ; j >= 0 ; i++, j--) {
            for(k = i ; k < j; k++)A[i][k]=c++;
            for(k = i ; k < j; k++)A[k][j]=c++;
            for(k = j ; k > i; k--)A[j][k]=c++;
            for(k = j ; k > i; k--)A[k][i]=c++;
    }
    if (N%2)
       A[N/2][N/2]=c;
    for (i=0;i<N;i++) {
        for (j=0;j<N;j++)
            printf("%0*d ",((int)log10(N*N)+1),A[j][i]);
        printf("\n");
    }
}

3

Python 2.7:

def spiral(n):
   rows = [[n * n]]
   current = n * n - 1

   while current:
      rows = zip(*([range(current, current - len(rows[0]), -1)] + rows))[::-1]
      current -= len(rows)

   digits = len(str(n * n))
   for row in rows:
      print" ".join(str(cell).zfill(digits) for cell in row)

spiral(5)

3

PHP, 272 caracteres incluindo comentário

Versão recursiva baseada em Func - mais interessante para mim, pois expressa melhor a intenção. Também funciona para largura e altura distintas.

<?php

$n = $argv[1];

for($y = 0; $y<$n; $y++){
    for($x = 0; $x<$n; $x++)
        printf("%02d ", f($n, $n, $x, $y));

    echo "\n";
}

function f($w, $h, $x, $y){
    return ($y)
        ?$w + f($h - 1, $w, $y - 1, $w - $x - 1) //strip-off first row and "rotate"
        :$x;
}

Resultado:

C:\www>php -f golfed_spiral.php 8
00 01 02 03 04 05 06 07
27 28 29 30 31 32 33 08
26 47 48 49 50 51 34 09
25 46 59 60 61 52 35 10
24 45 58 63 62 53 36 11
23 44 57 56 55 54 37 12
22 43 42 41 40 39 38 13
21 20 19 18 17 16 15 14

2

C #, 380-ish jogado

Eu não me incomodei em colar na versão de golfe, pois estava bastante confiante de que isso não quebraria recordes. Mas eu queria tentar pensar um pouco diferente. Em vez de escrever cada linha ou posição à medida que chego a ela, estou movendo o cursor para a posição, escrevendo o número do centro inicial e saindo em espiral a partir daí (que ilustrou um padrão interessante de posições a serem movidas por mudança de direção )

Há uma quantidade razoável de espaço de caracteres desperdiçado, fazendo com que o buffer do console aceite os valores maiores, além de calcular a posição do canto superior esquerdo (o que, com certeza, pode ser melhorado).

De qualquer forma, foi um exercício interessante.

    static void Main(string[] p)
    {
        int squareSize = 4;
        Console.BufferHeight = 300;
        Console.BufferWidth = 300;

        int maxTravel = 0;
        int currentTravel = 0;
        int travelCounter = 0;
        var a = squareSize % 2 == 0;
        int direction = a ? 2 : 0;
        int pad = squareSize * squareSize;
        int padLength = (pad + "").Length;

        int y = a ? (squareSize / 2) - 1 : (squareSize - 1) / 2;
        int x = a ? y + 1 : y;
        x = x + (x * padLength);

        for (int i = pad; i > 0; i--)
        {
            Console.SetCursorPosition(x, y);
            Console.Write((i + "").PadLeft(padLength, '0') + " ");

            switch (direction)
            {
                case 0:
                    y--;
                    break;

                case 1:
                    x += padLength + 1;
                    break;

                case 2:
                    y++;
                    break;

                case 3:
                    x -= padLength + 1;
                    break;
            }

            if (++currentTravel > maxTravel)
            {
                currentTravel = 0;
                direction = ++direction % 4;

                if (++travelCounter == 2)
                {
                    travelCounter = 0;
                    maxTravel++;
                }
            }

        }
    }

2

Rubi

Esta não é uma solução de golfe particularmente boa, mas pode ser de interesse algorítmico.

Eu sempre fui fascinado por um problema semelhante , a saber, encontrar o caminho espiral no sentido horário através de uma matriz NxM. Uma maneira realmente intuitiva de resolver esse problema é continuar girando a matriz no sentido anti-horário e descascando-a como uma laranja. Eu uso um método semelhante - embora não tão elegante - para fazer o inverso:

def spiral_matrix(n)
  matrix = Array.new(n) { Array.new(n) }
  path = [*1..n*n]
  padding = (n*n).to_s.size
  layer = 0
  until path.empty?
    matrix[layer].map! { |l| l || path.shift }
    matrix = matrix.transpose.reverse
    layer += 1 unless matrix[layer].include?(nil)
  end
  matrix = matrix.transpose.reverse until matrix[0][0] == 1
  matrix.transpose.each do |row|
    row.each do |l|
      print "%0#{padding}d" % l, ' '
    end
    puts
  end
end

1

Raquete

Só queria experimentá-lo com uma solução usando quase 0 de memória. Sem matriz, sem nada. O valor pode ser gerado para qualquer posição a qualquer momento. Poderíamos pedir uma espiral de qualquer tamanho (se o que receber o fluxo de saída puder lidar com isso). Na esperança de que alguém precise de espirais gigantescas.

Aqui está o código

; number of chars required to write x in base 10
; defined for x > 0
(define log10
  (λ (x)
    (inexact->exact
     (+ 1 (floor (/ (log x) (log 10)))))))

; tells the square number
; works for squares of both even and odd sizes
; outer square # = 0
(define square#
  (λ (x y size) ; x and y begin at 0
    (min x y
         (- size 1 x)
         (- size 1 y))))

; tells the number of values in a square
(define square-val-qty
  (λ (sqr# size) ; size is the whole spiral size
    (let ((res (* 4 (- size (* 2 sqr#) 1))))
      (cond
        ((zero? res) 1)
        (else res)))))


; at which value a square starts
; works for odd/even spirals
(define square-1st-val
  (λ (sqr# size)
    (+ (* 4 sqr# (- size sqr#)) 1)))

; square size from spiral size
(define square-side
  (λ (sqr# size)
    (- size (* 2 sqr#))))

(define 1+
  (λ (n)
    (+ n 1)))

(define 1-
  (λ (n)
    (- n 1)))

; calculates the position on the square (from 0)
(define position-on-square
  (λ (x y size)
    (let* ((sqr#     (square# x y size))
           (sqr-x    (- x sqr#))
           (sqr-y    (- y sqr#))
           (sqr-side (square-side sqr# size)))
      (cond
        ((and (zero? sqr-x) (< sqr-y (1- sqr-side))) ; left part
         sqr-y)
        ((and (eq? sqr-y (1- sqr-side)) (< sqr-x (1- sqr-side))) ; bottom
         (+ (1- sqr-side) sqr-x))
        ((and (not (eq? sqr-y 0)) (eq? sqr-x (1- sqr-side))) ; right
         (+ (* 2 (1- sqr-side)) (- sqr-side sqr-y 1)))
        (else ; top
         (+ (* 3 (1- sqr-side)) (- sqr-side sqr-x 1)))))))

; returns the spiral value at the given position
(define spiral-value
  (λ (x y size)
    (+ (square-1st-val (square# x y size) size)
       (position-on-square x y size))))

; pads a string with char
(define left-pad
  (λ (str char width)
    (cond
      ((< (string-length str) width)
       (left-pad (string-append (string char) str) char width))
      (else
       str))))

; draws a spiral!
(define draw-spiral
  (λ (size)
    (let ((x 0)
          (y 0)
          (width (log10 (* size size))))
      (letrec ((draw
                (λ ()
                  (printf "~a " (left-pad (number->string (spiral-value x y size)) #\0 width))
                  (cond
                    ((and (eq? x (1- size)) (eq? y (1- size)))
                     (printf "~n~n"))
                    ((eq? x (1- size))
                     (set! x 0)
                     (set! y (1+ y))
                     (printf "~n")
                     (draw))
                    (else
                     (set! x (1+ x))
                     (draw))))))
        (draw)))))

Testando com este

(draw-spiral 1)
(draw-spiral 2)
(draw-spiral 3)
(draw-spiral 4)
(draw-spiral 5)
(draw-spiral 15)
(draw-spiral 16)

Resultados na saída

1 

1 4 
2 3 

1 8 7 
2 9 6 
3 4 5 

01 12 11 10 
02 13 16 09 
03 14 15 08 
04 05 06 07 

01 16 15 14 13 
02 17 24 23 12 
03 18 25 22 11 
04 19 20 21 10 
05 06 07 08 09 

001 056 055 054 053 052 051 050 049 048 047 046 045 044 043 
002 057 104 103 102 101 100 099 098 097 096 095 094 093 042 
003 058 105 144 143 142 141 140 139 138 137 136 135 092 041 
004 059 106 145 176 175 174 173 172 171 170 169 134 091 040 
005 060 107 146 177 200 199 198 197 196 195 168 133 090 039 
006 061 108 147 178 201 216 215 214 213 194 167 132 089 038 
007 062 109 148 179 202 217 224 223 212 193 166 131 088 037 
008 063 110 149 180 203 218 225 222 211 192 165 130 087 036 
009 064 111 150 181 204 219 220 221 210 191 164 129 086 035 
010 065 112 151 182 205 206 207 208 209 190 163 128 085 034 
011 066 113 152 183 184 185 186 187 188 189 162 127 084 033 
012 067 114 153 154 155 156 157 158 159 160 161 126 083 032 
013 068 115 116 117 118 119 120 121 122 123 124 125 082 031 
014 069 070 071 072 073 074 075 076 077 078 079 080 081 030 
015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 

001 060 059 058 057 056 055 054 053 052 051 050 049 048 047 046 
002 061 112 111 110 109 108 107 106 105 104 103 102 101 100 045 
003 062 113 156 155 154 153 152 151 150 149 148 147 146 099 044 
004 063 114 157 192 191 190 189 188 187 186 185 184 145 098 043 
005 064 115 158 193 220 219 218 217 216 215 214 183 144 097 042 
006 065 116 159 194 221 240 239 238 237 236 213 182 143 096 041 
007 066 117 160 195 222 241 252 251 250 235 212 181 142 095 040 
008 067 118 161 196 223 242 253 256 249 234 211 180 141 094 039 
009 068 119 162 197 224 243 254 255 248 233 210 179 140 093 038 
010 069 120 163 198 225 244 245 246 247 232 209 178 139 092 037 
011 070 121 164 199 226 227 228 229 230 231 208 177 138 091 036 
012 071 122 165 200 201 202 203 204 205 206 207 176 137 090 035 
013 072 123 166 167 168 169 170 171 172 173 174 175 136 089 034 
014 073 124 125 126 127 128 129 130 131 132 133 134 135 088 033 
015 074 075 076 077 078 079 080 081 082 083 084 085 086 087 032 
016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 

Bastante intensidade de CPU em comparação com matrizes pré-calculadas, se você precisar de toda a espiral, mas pode ser útil. Quem sabe! Por exemplo:

(spiral-value 1234567 7654321 234567890)  ->  1152262488724319

Não jogou golfe ... É bem pequeno, apesar da aparência. Eu usei nomes longos e comentários.


1

Python 2 , 800 bytes

from collections import namedtuple
Crd = namedtuple('Crd',['row','col','val'])
C1 = Crd(1,1,1)
def add(c1, c2):
    return Crd(c1.row + c2.row, c1.col + c2.col, c1.val + c2.val)
def deltas(l):
    for i in xrange(1,l): yield Crd(0,1,1)
    for i in xrange(1,l): yield Crd(1,0,1)
    for i in xrange(1,l): yield Crd(0,-1,1)
    for i in xrange(1,l-1): yield Crd(-1,0,1)
def ring(c, l):
    yield c
    for d in deltas(l):
        c = add(c, d)
        yield c
def spiral(n):
    cur = C1
    while n > 0:
        for c in ring(cur, n):
            yield c
            cur = c
        cur = add(cur, Crd(0,1,1))
        n -= 2
n    = input()
fmt  = '%' + str(len(str(long(n*n)))) + 'd'
crds = sorted(list(spiral(n)))
for r in xrange(1,n+1):
    print ' '.join([fmt % c.val for c in crds if c.row == r])

Experimente online!

Alguns anos atrás, um amigo meu fez essa pergunta em uma entrevista. Eles me falaram sobre isso no jantar de Ação de Graças da nossa família, então penso nisso como o "problema do Dia de Ação de Graças".


1

PHP, 172 171 + 1 bytes, 24 operações

cria uma matriz percorrendo os índices através de uma espiral; depois imprime o resultado.

// 1) input squared -> 2) string length -> 3) $e = length of maximum number
for($e=strlen($argn**2);
    // 4) decrement input (line length) every second iteration; 5) loop while input>0
    $argn-=$i%2;
    // 24) post-increment iteration counter $i
    $i++)
    // 6,7,8) loop through current line
    for($p=$argn;$p--;)$r
        // 9) $i=$i modulo 4; 10,11) (1-$i)%2 == [1,0,-1,0][$i] -> 12) increment/decrement $y coordinate3
        [$y+=(1-$i%=4)%2]
        // 13,14) (2-$i)%2 == [0,1,0,-1][$i] -> 15) increment/decrement $x coordinate
        [$x+=(2-$i)%2]
        // 16) print formatted to string; 17) assign to field [$y,$x] in $r
        =sprintf("%0{$e}d ",++$n);
// 18) pre-increment row counter $z; 19) loop while row exists
for(;$r[++$z];
    // 21) join row; 22) append newline; 23) print
    print join($r[$z])."\n")
    // 20) sort row by indexes
    ksort($r[$z]);

Execute como pipe -nRou experimente online .

Adicione uma atribuição para salvar cinco bytes: substitua o loop final por

for(;$s=$r[++$z];print join($s)."\n")ksort($s);

0

Código de exemplo: isso funciona para 4x5, mas falha em 3x5

while (k <m && l <n) {/ * Imprime a primeira linha das linhas restantes * / para (i = l; i <n; ++ i) {printf ("% d", a [k] [ Eu]); } k ++;

    /* Print the last column from the remaining columns */
    for (i = k; i < m; ++i)
    {
        printf("%d ", a[i][n-1]);
    }
    n--;

    /* Print the last row from the remaining rows */
    if ( k < m)
    {
        for (i = n-1; i >= l; --i)
        {
            printf("%d ", a[m-1][i]);
        }
        m--;
    }

    /* Print the first column from the remaining columns */
    if (l < n)
    {
        for (i = m-1; i >= k; --i)
        {
            printf("%d ", a[i][l]);
        }
        l++;    
    }        
}

2
Bem-vindo ao PPCG! Isso é código de golfe. Mostre algum esforço para resolver o problema com o menor número de caracteres possível. Em particular, você pode usar nomes de variáveis ​​de um caractere, remover espaços em branco e comentários desnecessários. Inclua também a contagem de bytes do seu envio após a redução. Você sempre pode manter a versão legível, além da versão golfada.
Martin Ender
Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.