Estou tentando entender o que se entende por "determinístico" em expressões como "gramática determinística livre de contexto". (Existem "coisas" mais determinísticas neste campo). Eu apreciaria um exemplo mais do que a explicação mais elaborada! Se possível.
Minha principal fonte de confusão é não poder dizer como essa propriedade de uma gramática é diferente da (não) ambiguidade.
O mais próximo que cheguei de encontrar o que significa é esta citação do artigo de D. Knuth Sobre a tradução de idiomas da esquerda para a direita :
Ginsburg e Greibach (1965) definiram a noção de uma linguagem determinística; mostramos na seção V que esses são precisamente os idiomas para os quais existe uma gramática LR (k)
que se torna circular assim que você chega ao Section V
, porque lá diz que o que o analisador LR (k) pode analisar é a linguagem determinística ...
Abaixo está um exemplo que eu poderia encontrar para me ajudar a entender o que "ambíguo" significa, por favor, dê uma olhada:
onewartwoearewe
Que pode ser analisado como one war two ear ewe
ou o new art woe are we
- se uma gramática permitir isso (digamos que tenha todas as palavras que acabei de listar).
O que eu precisaria fazer para tornar esse exemplo de linguagem (não) determinístico? (Eu poderia, por exemplo, remover a palavra o
da gramática, para torná-la não ambígua).
A linguagem acima é determinística?
PS. O exemplo é do livro Godel, Esher, Bach: Eternal Golden Braid.
Digamos que definimos a gramática para o idioma de exemplo da seguinte forma:
S -> A 'we' | A 'ewe'
A -> B | BA
B -> 'o' | 'new' | 'art' | 'woe' | 'are' | 'one' | 'war' | 'two' | 'ear'
Pelo argumento de ter que analisar toda a cadeia, essa gramática torna a linguagem não determinística?
let explode s =
let rec exp i l =
if i < 0 then l else exp (i - 1) (s.[i] :: l) in
exp (String.length s - 1) [];;
let rec woe_parser s =
match s with
| 'w' :: 'e' :: [] -> true
| 'e' :: 'w' :: 'e' :: [] -> true
| 'o' :: x -> woe_parser x
| 'n' :: 'e' :: 'w' :: x -> woe_parser x
| 'a' :: 'r' :: 't' :: x -> woe_parser x
| 'w' :: 'o' :: 'e' :: x -> woe_parser x
| 'a' :: 'r' :: 'e' :: x -> woe_parser x
(* this line will trigger an error, because it creates
ambiguous grammar *)
| 'o' :: 'n' :: 'e' :: x -> woe_parser x
| 'w' :: 'a' :: 'r' :: x -> woe_parser x
| 't' :: 'w' :: 'o' :: x -> woe_parser x
| 'e' :: 'a' :: 'r' :: x -> woe_parser x
| _ -> false;;
woe_parser (explode "onewartwoearewe");;
- : bool = true
| Label | Pattern |
|---------+--------------|
| rule-01 | S -> A 'we' |
| rule-02 | S -> A 'ewe' |
| rule-03 | A -> B |
| rule-04 | A -> BA |
| rule-05 | B -> 'o' |
| rule-06 | B -> 'new' |
| rule-07 | B -> 'art' |
| rule-08 | B -> 'woe' |
| rule-09 | B -> 'are' |
| rule-10 | B -> 'one' |
| rule-11 | B -> 'war' |
| rule-12 | B -> 'two' |
| rule-13 | B -> 'ear' |
#+TBLFM: @2$1..@>$1='(format "rule-%02d" (1- @#));L
Generating =onewartwoearewe=
First way to generate:
| Input | Rule | Product |
|-------------------+---------+-------------------|
| '' | rule-01 | A'we' |
| A'we' | rule-04 | BA'we' |
| BA'we' | rule-05 | 'o'A'we' |
| 'o'A'we' | rule-04 | 'o'BA'we' |
| 'o'BA'we' | rule-06 | 'onew'A'we' |
| 'onew'A'we' | rule-04 | 'onew'BA'we' |
| 'onew'BA'we' | rule-07 | 'onewart'A'we' |
| 'onewart'A'we' | rule-04 | 'onewart'BA'we' |
| 'onewart'BA'we' | rule-08 | 'onewartwoe'A'we' |
| 'onewartwoe'A'we' | rule-03 | 'onewartwoe'B'we' |
| 'onewartwoe'B'we' | rule-09 | 'onewartwoearewe' |
|-------------------+---------+-------------------|
| | | 'onewartwoearewe' |
Second way to generate:
| Input | Rule | Product |
|-------------------+---------+-------------------|
| '' | rule-02 | A'ewe' |
| A'ewe' | rule-04 | BA'ewe' |
| BA'ewe' | rule-10 | 'one'A'ewe' |
| 'one'A'ewe' | rule-04 | 'one'BA'ewe' |
| 'one'BA'ewe' | rule-11 | 'onewar'A'ewe' |
| 'onewar'A'ewe' | rule-04 | 'onewar'BA'ewe' |
| 'onewar'BA'ewe' | rule-12 | 'onewartwo'A'ewe' |
| 'onewartwo'A'ewe' | rule-03 | 'onewartwo'B'ewe' |
| 'onewartwo'B'ewe' | rule-13 | 'onewartwoearewe' |
|-------------------+---------+-------------------|
| | | 'onewartwoearewe' |
B -> 'o'
ela não será mais ambígua ...
S
. Pela aplicação da regra S := ...
, obtemos ...
, ..."