Encontrei pacotes sendo usados para calcular o "Ganho de Informações" para selecionar os principais atributos na Árvore de Decisão C4.5 e tentei usá-los para calcular o "Ganho de Informações".
Mas os resultados do cálculo de cada pacote são diferentes, como no código abaixo.
> IG.CORElearn <- attrEval(In_Occu ~ In_Temp+In_Humi+In_CO2+In_Illu+In_LP+Out_Temp+Out_Humi, dataUSE1, estimator = "InfGain")
> IG.RWeka <- InfoGainAttributeEval(In_Occu ~ In_Temp+In_Humi+In_CO2+In_Illu+In_LP+Out_Temp+Out_Humi, dataUSE1)
> IG.FSelector <- information.gain(In_Occu ~ In_Temp+In_Humi+In_CO2+In_Illu+In_LP+Out_Temp+Out_Humi,dataUSE1)
> IG.CORElearn
In_Temp In_Humi In_CO2 In_Illu In_LP Out_Temp Out_Humi
0.04472928 0.02705100 0.09305418 0.35064927 0.44299167 0.01832216 0.05551973
> IG.RWeka
In_Temp In_Humi In_CO2 In_Illu In_LP Out_Temp Out_Humi
0.11964771 0.04340197 0.12266724 0.38963327 0.44299167 0.03831816 0.07705798
> IG.FSelector
attr_importance
In_Temp 0.08293347
In_Humi 0.02919697
In_CO2 0.08411316
In_Illu 0.27007321
In_LP 0.30705843
Out_Temp 0.02656012
Out_Humi 0.05341252
Por que os resultados do cálculo de cada pacote são diferentes? E qual deles está certo?