Esta não é uma resposta tradicional, mas achei que seria útil publicar referências de algumas das técnicas mencionadas até agora. Estou testando em um servidor de 96 núcleos com o SQL Server 2017 CU9.
Muitos problemas de escalabilidade são causados por encadeamentos simultâneos disputando algum estado global. Por exemplo, considere a disputa clássica da página do PFS. Isso pode acontecer se muitos threads de trabalho precisarem modificar a mesma página na memória. À medida que o código se torna mais eficiente, ele pode solicitar a trava mais rapidamente. Isso aumenta a disputa. Simplificando, é mais provável que um código eficiente leve a problemas de escalabilidade, porque o estado global é disputado mais severamente. É menos provável que o código lento cause problemas de escalabilidade porque o estado global não é acessado com tanta frequência.
HASHBYTES
A escalabilidade é parcialmente baseada no comprimento da sequência de entrada. Minha teoria foi por que isso ocorre é que o acesso a algum estado global é necessário quando a HASHBYTES
função é chamada. O estado global fácil de observar é que uma página de memória precisa ser alocada por chamada em algumas versões do SQL Server. O mais difícil de observar é que há algum tipo de contenção no SO. Como resultado, se HASHBYTES
for chamado pelo código com menos frequência, a contenção diminuirá. Uma maneira de reduzir a taxa de HASHBYTES
chamadas é aumentar a quantidade de trabalho de hash necessário por chamada. O trabalho de hash é parcialmente baseado no comprimento da sequência de entrada. Para reproduzir o problema de escalabilidade que vi no aplicativo, precisava alterar os dados da demonstração. Um cenário de pior caso razoável é uma tabela com 21BIGINT
colunas. A definição da tabela está incluída no código na parte inferior. Para reduzir o Local Factors ™, estou usando MAXDOP 1
consultas simultâneas que operam em tabelas relativamente pequenas. Meu código de referência rápida está na parte inferior.
Observe que as funções retornam diferentes comprimentos de hash. MD5
e SpookyHash
ambos são hashes de 128 bits, SHA256
é um hash de 256 bits.
RESULTADOS ( NVARCHAR
vs VARBINARY
conversão e concatenação)
Para verificar se a conversão e concatenação VARBINARY
é realmente mais eficiente / com desempenho do que NVARCHAR
uma NVARCHAR
versão do RUN_HASHBYTES_SHA2_256
procedimento armazenado foi criada a partir do mesmo modelo (consulte a "Etapa 5" na seção CÓDIGO DE BENCHMARKING abaixo). As únicas diferenças são:
- O nome do Procedimento Armazenado termina em
_NVC
BINARY(8)
para a CAST
função foi alterada para serNVARCHAR(15)
0x7C
foi alterado para ser N'|'
Resultando em:
CAST(FK1 AS NVARCHAR(15)) + N'|' +
ao invés de:
CAST(FK1 AS BINARY(8)) + 0x7C +
A tabela abaixo contém o número de hashes realizados em 1 minuto. Os testes foram realizados em um servidor diferente do usado nos outros testes mencionados abaixo.
╔════════════════╦══════════╦══════════════╗
║ Datatype ║ Test # ║ Total Hashes ║
╠════════════════╬══════════╬══════════════╣
║ NVARCHAR ║ 1 ║ 10200000 ║
║ NVARCHAR ║ 2 ║ 10300000 ║
║ NVARCHAR ║ AVERAGE ║ * 10250000 * ║
║ -------------- ║ -------- ║ ------------ ║
║ VARBINARY ║ 1 ║ 12500000 ║
║ VARBINARY ║ 2 ║ 12800000 ║
║ VARBINARY ║ AVERAGE ║ * 12650000 * ║
╚════════════════╩══════════╩══════════════╝
Observando apenas as médias, podemos calcular o benefício de mudar para VARBINARY
:
SELECT (12650000 - 10250000) AS [IncreaseAmount],
ROUND(((126500000 - 10250000) / 10250000) * 100.0, 3) AS [IncreasePercentage]
Isso retorna:
IncreaseAmount: 2400000.0
IncreasePercentage: 23.415
RESULTADOS (algoritmos de hash e implementações)
A tabela abaixo contém o número de hashes realizados em 1 minuto. Por exemplo, o uso CHECKSUM
com 84 consultas simultâneas resultou em mais de 2 bilhões de hashes antes do tempo acabar.
╔════════════════════╦════════════╦════════════╦════════════╗
║ Function ║ 12 threads ║ 48 threads ║ 84 threads ║
╠════════════════════╬════════════╬════════════╬════════════╣
║ CHECKSUM ║ 281250000 ║ 1122440000 ║ 2040100000 ║
║ HASHBYTES MD5 ║ 75940000 ║ 106190000 ║ 112750000 ║
║ HASHBYTES SHA2_256 ║ 80210000 ║ 117080000 ║ 124790000 ║
║ CLR Spooky ║ 131250000 ║ 505700000 ║ 786150000 ║
║ CLR SpookyLOB ║ 17420000 ║ 27160000 ║ 31380000 ║
║ SQL# MD5 ║ 17080000 ║ 26450000 ║ 29080000 ║
║ SQL# SHA2_256 ║ 18370000 ║ 28860000 ║ 32590000 ║
║ SQL# MD5 8k ║ 24440000 ║ 30560000 ║ 32550000 ║
║ SQL# SHA2_256 8k ║ 87240000 ║ 159310000 ║ 155760000 ║
╚════════════════════╩════════════╩════════════╩════════════╝
Se você preferir ver os mesmos números medidos em termos de trabalho por segundo de thread:
╔════════════════════╦════════════════════════════╦════════════════════════════╦════════════════════════════╗
║ Function ║ 12 threads per core-second ║ 48 threads per core-second ║ 84 threads per core-second ║
╠════════════════════╬════════════════════════════╬════════════════════════════╬════════════════════════════╣
║ CHECKSUM ║ 390625 ║ 389736 ║ 404782 ║
║ HASHBYTES MD5 ║ 105472 ║ 36872 ║ 22371 ║
║ HASHBYTES SHA2_256 ║ 111403 ║ 40653 ║ 24760 ║
║ CLR Spooky ║ 182292 ║ 175590 ║ 155982 ║
║ CLR SpookyLOB ║ 24194 ║ 9431 ║ 6226 ║
║ SQL# MD5 ║ 23722 ║ 9184 ║ 5770 ║
║ SQL# SHA2_256 ║ 25514 ║ 10021 ║ 6466 ║
║ SQL# MD5 8k ║ 33944 ║ 10611 ║ 6458 ║
║ SQL# SHA2_256 8k ║ 121167 ║ 55316 ║ 30905 ║
╚════════════════════╩════════════════════════════╩════════════════════════════╩════════════════════════════╝
Algumas reflexões rápidas sobre todos os métodos:
CHECKSUM
: muito boa escalabilidade conforme o esperado
HASHBYTES
: os problemas de escalabilidade incluem uma alocação de memória por chamada e uma grande quantidade de CPU gasta no sistema operacional
Spooky
: surpreendentemente boa escalabilidade
Spooky LOB
: o spinlock SOS_SELIST_SIZED_SLOCK
gira fora de controle. Suspeito que esse seja um problema geral com a passagem de LOBs através das funções CLR, mas não tenho certeza
Util_HashBinary
: parece que é atingido pelo mesmo spinlock. Eu não olhei para isso até agora, porque provavelmente não há muito que eu possa fazer sobre isso:
Util_HashBinary 8k
: resultados muito surpreendentes, não sei o que está acontecendo aqui
Resultados finais testados em um servidor menor:
╔═════════════════════════╦════════════════════════╦════════════════════════╗
║ Hash Algorithm ║ Hashes over 11 threads ║ Hashes over 44 threads ║
╠═════════════════════════╬════════════════════════╬════════════════════════╣
║ HASHBYTES SHA2_256 ║ 85220000 ║ 167050000 ║
║ SpookyHash ║ 101200000 ║ 239530000 ║
║ Util_HashSHA256Binary8k ║ 90590000 ║ 217170000 ║
║ SpookyHashLOB ║ 23490000 ║ 38370000 ║
║ Util_HashSHA256Binary ║ 23430000 ║ 36590000 ║
╚═════════════════════════╩════════════════════════╩════════════════════════╝
CÓDIGO DE REFERÊNCIA
CONFIGURAÇÃO 1: Tabelas e dados
DROP TABLE IF EXISTS dbo.HASH_SMALL;
CREATE TABLE dbo.HASH_SMALL (
ID BIGINT NOT NULL,
FK1 BIGINT NOT NULL,
FK2 BIGINT NOT NULL,
FK3 BIGINT NOT NULL,
FK4 BIGINT NOT NULL,
FK5 BIGINT NOT NULL,
FK6 BIGINT NOT NULL,
FK7 BIGINT NOT NULL,
FK8 BIGINT NOT NULL,
FK9 BIGINT NOT NULL,
FK10 BIGINT NOT NULL,
FK11 BIGINT NOT NULL,
FK12 BIGINT NOT NULL,
FK13 BIGINT NOT NULL,
FK14 BIGINT NOT NULL,
FK15 BIGINT NOT NULL,
FK16 BIGINT NOT NULL,
FK17 BIGINT NOT NULL,
FK18 BIGINT NOT NULL,
FK19 BIGINT NOT NULL,
FK20 BIGINT NOT NULL
);
INSERT INTO dbo.HASH_SMALL WITH (TABLOCK)
SELECT RN,
4000000 - RN, 4000000 - RN
,200000000 - RN, 200000000 - RN
, RN % 500000 , RN % 500000 , RN % 500000
, RN % 500000 , RN % 500000 , RN % 500000
, 100000 - RN % 100000, RN % 100000
, 100000 - RN % 100000, RN % 100000
, 100000 - RN % 100000, RN % 100000
, 100000 - RN % 100000, RN % 100000
, 100000 - RN % 100000, RN % 100000
FROM (
SELECT TOP (10000) ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) RN
FROM master..spt_values t1
CROSS JOIN master..spt_values t2
) q
OPTION (MAXDOP 1);
DROP TABLE IF EXISTS dbo.LOG_HASHES;
CREATE TABLE dbo.LOG_HASHES (
LOG_TIME DATETIME,
HASH_ALGORITHM INT,
SESSION_ID INT,
NUM_HASHES BIGINT
);
CONFIGURAÇÃO 2: Processo de execução principal
GO
CREATE OR ALTER PROCEDURE dbo.RUN_HASHES_FOR_ONE_MINUTE (@HashAlgorithm INT)
AS
BEGIN
DECLARE @target_end_time DATETIME = DATEADD(MINUTE, 1, GETDATE()),
@query_execution_count INT = 0;
SET NOCOUNT ON;
DECLARE @ProcName NVARCHAR(261); -- schema_name + proc_name + '[].[]'
DECLARE @RowCount INT;
SELECT @RowCount = SUM(prtn.[row_count])
FROM sys.dm_db_partition_stats prtn
WHERE prtn.[object_id] = OBJECT_ID(N'dbo.HASH_SMALL')
AND prtn.[index_id] < 2;
-- Load assembly if not loaded to prevent load time from skewing results
DECLARE @OptionalInitSQL NVARCHAR(MAX);
SET @OptionalInitSQL = CASE @HashAlgorithm
WHEN 1 THEN N'SELECT @Dummy = dbo.SpookyHash(0x1234);'
WHEN 2 THEN N'' -- HASHBYTES
WHEN 3 THEN N'' -- HASHBYTES
WHEN 4 THEN N'' -- CHECKSUM
WHEN 5 THEN N'SELECT @Dummy = dbo.SpookyHashLOB(0x1234);'
WHEN 6 THEN N'SELECT @Dummy = SQL#.Util_HashBinary(N''MD5'', 0x1234);'
WHEN 7 THEN N'SELECT @Dummy = SQL#.Util_HashBinary(N''SHA256'', 0x1234);'
WHEN 8 THEN N'SELECT @Dummy = SQL#.Util_HashBinary8k(N''MD5'', 0x1234);'
WHEN 9 THEN N'SELECT @Dummy = SQL#.Util_HashBinary8k(N''SHA256'', 0x1234);'
/* -- BETA / non-public code
WHEN 10 THEN N'SELECT @Dummy = SQL#.Util_HashSHA256Binary8k(0x1234);'
WHEN 11 THEN N'SELECT @Dummy = SQL#.Util_HashSHA256Binary(0x1234);'
*/
END;
IF (RTRIM(@OptionalInitSQL) <> N'')
BEGIN
SET @OptionalInitSQL = N'
SET NOCOUNT ON;
DECLARE @Dummy VARBINARY(100);
' + @OptionalInitSQL;
RAISERROR(N'** Executing optional initialization code:', 10, 1) WITH NOWAIT;
RAISERROR(@OptionalInitSQL, 10, 1) WITH NOWAIT;
EXEC (@OptionalInitSQL);
RAISERROR(N'-------------------------------------------', 10, 1) WITH NOWAIT;
END;
SET @ProcName = CASE @HashAlgorithm
WHEN 1 THEN N'dbo.RUN_SpookyHash'
WHEN 2 THEN N'dbo.RUN_HASHBYTES_MD5'
WHEN 3 THEN N'dbo.RUN_HASHBYTES_SHA2_256'
WHEN 4 THEN N'dbo.RUN_CHECKSUM'
WHEN 5 THEN N'dbo.RUN_SpookyHashLOB'
WHEN 6 THEN N'dbo.RUN_SR_MD5'
WHEN 7 THEN N'dbo.RUN_SR_SHA256'
WHEN 8 THEN N'dbo.RUN_SR_MD5_8k'
WHEN 9 THEN N'dbo.RUN_SR_SHA256_8k'
/* -- BETA / non-public code
WHEN 10 THEN N'dbo.RUN_SR_SHA256_new'
WHEN 11 THEN N'dbo.RUN_SR_SHA256LOB_new'
*/
WHEN 13 THEN N'dbo.RUN_HASHBYTES_SHA2_256_NVC'
END;
RAISERROR(N'** Executing proc: %s', 10, 1, @ProcName) WITH NOWAIT;
WHILE GETDATE() < @target_end_time
BEGIN
EXEC @ProcName;
SET @query_execution_count = @query_execution_count + 1;
END;
INSERT INTO dbo.LOG_HASHES
VALUES (GETDATE(), @HashAlgorithm, @@SPID, @RowCount * @query_execution_count);
END;
GO
CONFIGURAÇÃO 3: Processo de detecção de colisão
GO
CREATE OR ALTER PROCEDURE dbo.VERIFY_NO_COLLISIONS (@HashAlgorithm INT)
AS
SET NOCOUNT ON;
DECLARE @RowCount INT;
SELECT @RowCount = SUM(prtn.[row_count])
FROM sys.dm_db_partition_stats prtn
WHERE prtn.[object_id] = OBJECT_ID(N'dbo.HASH_SMALL')
AND prtn.[index_id] < 2;
DECLARE @CollisionTestRows INT;
DECLARE @CollisionTestSQL NVARCHAR(MAX);
SET @CollisionTestSQL = N'
SELECT @RowsOut = COUNT(DISTINCT '
+ CASE @HashAlgorithm
WHEN 1 THEN N'dbo.SpookyHash('
WHEN 2 THEN N'HASHBYTES(''MD5'','
WHEN 3 THEN N'HASHBYTES(''SHA2_256'','
WHEN 4 THEN N'CHECKSUM('
WHEN 5 THEN N'dbo.SpookyHashLOB('
WHEN 6 THEN N'SQL#.Util_HashBinary(N''MD5'','
WHEN 7 THEN N'SQL#.Util_HashBinary(N''SHA256'','
WHEN 8 THEN N'SQL#.[Util_HashBinary8k](N''MD5'','
WHEN 9 THEN N'SQL#.[Util_HashBinary8k](N''SHA256'','
--/* -- BETA / non-public code
WHEN 10 THEN N'SQL#.[Util_HashSHA256Binary8k]('
WHEN 11 THEN N'SQL#.[Util_HashSHA256Binary]('
--*/
END
+ N'
CAST(FK1 AS BINARY(8)) + 0x7C +
CAST(FK2 AS BINARY(8)) + 0x7C +
CAST(FK3 AS BINARY(8)) + 0x7C +
CAST(FK4 AS BINARY(8)) + 0x7C +
CAST(FK5 AS BINARY(8)) + 0x7C +
CAST(FK6 AS BINARY(8)) + 0x7C +
CAST(FK7 AS BINARY(8)) + 0x7C +
CAST(FK8 AS BINARY(8)) + 0x7C +
CAST(FK9 AS BINARY(8)) + 0x7C +
CAST(FK10 AS BINARY(8)) + 0x7C +
CAST(FK11 AS BINARY(8)) + 0x7C +
CAST(FK12 AS BINARY(8)) + 0x7C +
CAST(FK13 AS BINARY(8)) + 0x7C +
CAST(FK14 AS BINARY(8)) + 0x7C +
CAST(FK15 AS BINARY(8)) + 0x7C +
CAST(FK16 AS BINARY(8)) + 0x7C +
CAST(FK17 AS BINARY(8)) + 0x7C +
CAST(FK18 AS BINARY(8)) + 0x7C +
CAST(FK19 AS BINARY(8)) + 0x7C +
CAST(FK20 AS BINARY(8)) ))
FROM dbo.HASH_SMALL;';
PRINT @CollisionTestSQL;
EXEC sp_executesql
@CollisionTestSQL,
N'@RowsOut INT OUTPUT',
@RowsOut = @CollisionTestRows OUTPUT;
IF (@CollisionTestRows <> @RowCount)
BEGIN
RAISERROR('Collisions for algorithm: %d!!! %d unique rows out of %d.',
16, 1, @HashAlgorithm, @CollisionTestRows, @RowCount);
END;
GO
CONFIGURAÇÃO 4: Limpeza (DROP All Procs Procs)
DECLARE @SQL NVARCHAR(MAX) = N'';
SELECT @SQL += N'DROP PROCEDURE [dbo].' + QUOTENAME(sp.[name])
+ N';' + NCHAR(13) + NCHAR(10)
FROM sys.objects sp
WHERE sp.[name] LIKE N'RUN[_]%'
AND sp.[type_desc] = N'SQL_STORED_PROCEDURE'
AND sp.[name] <> N'RUN_HASHES_FOR_ONE_MINUTE'
PRINT @SQL;
EXEC (@SQL);
CONFIGURAÇÃO 5: gerar procs de teste
SET NOCOUNT ON;
DECLARE @TestProcsToCreate TABLE
(
ProcName sysname NOT NULL,
CodeToExec NVARCHAR(261) NOT NULL
);
DECLARE @ProcName sysname,
@CodeToExec NVARCHAR(261);
INSERT INTO @TestProcsToCreate VALUES
(N'SpookyHash', N'dbo.SpookyHash('),
(N'HASHBYTES_MD5', N'HASHBYTES(''MD5'','),
(N'HASHBYTES_SHA2_256', N'HASHBYTES(''SHA2_256'','),
(N'CHECKSUM', N'CHECKSUM('),
(N'SpookyHashLOB', N'dbo.SpookyHashLOB('),
(N'SR_MD5', N'SQL#.Util_HashBinary(N''MD5'','),
(N'SR_SHA256', N'SQL#.Util_HashBinary(N''SHA256'','),
(N'SR_MD5_8k', N'SQL#.[Util_HashBinary8k](N''MD5'','),
(N'SR_SHA256_8k', N'SQL#.[Util_HashBinary8k](N''SHA256'',')
--/* -- BETA / non-public code
, (N'SR_SHA256_new', N'SQL#.[Util_HashSHA256Binary8k]('),
(N'SR_SHA256LOB_new', N'SQL#.[Util_HashSHA256Binary](');
--*/
DECLARE @ProcTemplate NVARCHAR(MAX),
@ProcToCreate NVARCHAR(MAX);
SET @ProcTemplate = N'
CREATE OR ALTER PROCEDURE dbo.RUN_{{ProcName}}
AS
BEGIN
DECLARE @dummy INT;
SET NOCOUNT ON;
SELECT @dummy = COUNT({{CodeToExec}}
CAST(FK1 AS BINARY(8)) + 0x7C +
CAST(FK2 AS BINARY(8)) + 0x7C +
CAST(FK3 AS BINARY(8)) + 0x7C +
CAST(FK4 AS BINARY(8)) + 0x7C +
CAST(FK5 AS BINARY(8)) + 0x7C +
CAST(FK6 AS BINARY(8)) + 0x7C +
CAST(FK7 AS BINARY(8)) + 0x7C +
CAST(FK8 AS BINARY(8)) + 0x7C +
CAST(FK9 AS BINARY(8)) + 0x7C +
CAST(FK10 AS BINARY(8)) + 0x7C +
CAST(FK11 AS BINARY(8)) + 0x7C +
CAST(FK12 AS BINARY(8)) + 0x7C +
CAST(FK13 AS BINARY(8)) + 0x7C +
CAST(FK14 AS BINARY(8)) + 0x7C +
CAST(FK15 AS BINARY(8)) + 0x7C +
CAST(FK16 AS BINARY(8)) + 0x7C +
CAST(FK17 AS BINARY(8)) + 0x7C +
CAST(FK18 AS BINARY(8)) + 0x7C +
CAST(FK19 AS BINARY(8)) + 0x7C +
CAST(FK20 AS BINARY(8))
)
)
FROM dbo.HASH_SMALL
OPTION (MAXDOP 1);
END;
';
DECLARE CreateProcsCurs CURSOR READ_ONLY FORWARD_ONLY LOCAL FAST_FORWARD
FOR SELECT [ProcName], [CodeToExec]
FROM @TestProcsToCreate;
OPEN [CreateProcsCurs];
FETCH NEXT
FROM [CreateProcsCurs]
INTO @ProcName, @CodeToExec;
WHILE (@@FETCH_STATUS = 0)
BEGIN
-- First: create VARBINARY version
SET @ProcToCreate = REPLACE(REPLACE(@ProcTemplate,
N'{{ProcName}}',
@ProcName),
N'{{CodeToExec}}',
@CodeToExec);
EXEC (@ProcToCreate);
-- Second: create NVARCHAR version (optional: built-ins only)
IF (CHARINDEX(N'.', @CodeToExec) = 0)
BEGIN
SET @ProcToCreate = REPLACE(REPLACE(REPLACE(@ProcToCreate,
N'dbo.RUN_' + @ProcName,
N'dbo.RUN_' + @ProcName + N'_NVC'),
N'BINARY(8)',
N'NVARCHAR(15)'),
N'0x7C',
N'N''|''');
EXEC (@ProcToCreate);
END;
FETCH NEXT
FROM [CreateProcsCurs]
INTO @ProcName, @CodeToExec;
END;
CLOSE [CreateProcsCurs];
DEALLOCATE [CreateProcsCurs];
TESTE 1: Verifique se há colisões
EXEC dbo.VERIFY_NO_COLLISIONS 1;
EXEC dbo.VERIFY_NO_COLLISIONS 2;
EXEC dbo.VERIFY_NO_COLLISIONS 3;
EXEC dbo.VERIFY_NO_COLLISIONS 4;
EXEC dbo.VERIFY_NO_COLLISIONS 5;
EXEC dbo.VERIFY_NO_COLLISIONS 6;
EXEC dbo.VERIFY_NO_COLLISIONS 7;
EXEC dbo.VERIFY_NO_COLLISIONS 8;
EXEC dbo.VERIFY_NO_COLLISIONS 9;
EXEC dbo.VERIFY_NO_COLLISIONS 10;
EXEC dbo.VERIFY_NO_COLLISIONS 11;
TESTE 2: Executar testes de desempenho
EXEC dbo.RUN_HASHES_FOR_ONE_MINUTE 1;
EXEC dbo.RUN_HASHES_FOR_ONE_MINUTE 2;
EXEC dbo.RUN_HASHES_FOR_ONE_MINUTE 3; -- HASHBYTES('SHA2_256'
EXEC dbo.RUN_HASHES_FOR_ONE_MINUTE 4;
EXEC dbo.RUN_HASHES_FOR_ONE_MINUTE 5;
EXEC dbo.RUN_HASHES_FOR_ONE_MINUTE 6;
EXEC dbo.RUN_HASHES_FOR_ONE_MINUTE 7;
EXEC dbo.RUN_HASHES_FOR_ONE_MINUTE 8;
EXEC dbo.RUN_HASHES_FOR_ONE_MINUTE 9;
EXEC dbo.RUN_HASHES_FOR_ONE_MINUTE 10;
EXEC dbo.RUN_HASHES_FOR_ONE_MINUTE 11;
EXEC dbo.RUN_HASHES_FOR_ONE_MINUTE 13; -- NVC version of #3
SELECT *
FROM dbo.LOG_HASHES
ORDER BY [LOG_TIME] DESC;
QUESTÕES DE VALIDAÇÃO A RESOLVER
Enquanto se concentra no teste de desempenho de uma UDF SQLCLR singular, duas questões discutidas no início não foram incorporadas aos testes, mas idealmente devem ser investigadas para determinar qual abordagem atende a todos os requisitos.
- A função será executada duas vezes por cada consulta (uma vez para a linha de importação e outra para a linha atual). Os testes até agora referenciaram o UDF apenas uma vez nas consultas de teste. Esse fator pode não alterar a classificação das opções, mas não deve ser ignorado, apenas por precaução.
Em um comentário que já foi excluído, Paul White havia mencionado:
Uma desvantagem de substituir HASHBYTES
por uma função escalar do CLR - parece que as funções do CLR não podem usar o modo em lote, enquanto HASHBYTES
podem. Isso pode ser importante, em termos de desempenho.
Portanto, isso é algo a considerar e requer claramente testes. Se as opções do SQLCLR não fornecerem nenhum benefício sobre o interno HASHBYTES
, isso adiciona peso à sugestão de Salomão de capturar hashes existentes (pelo menos para as maiores tabelas) nas tabelas relacionadas.
Clear()
método, mas eu não olhei tão longe no Spooky.