Após algumas experiências, descobri que é possível criar uma função de classificação com base no MapReduce, assumindo que o conjunto de resultados possa caber no tamanho máximo do documento.
Por exemplo, suponha que eu tenha uma coleção como esta:
{ player: "joe", points: 1000, foo: 10, bar: 20, bang: "some text" }
{ player: "susan", points: 2000, foo: 10, bar: 20, bang: "some text" }
{ player: "joe", points: 1500, foo: 10, bar: 20, bang: "some text" }
{ player: "ben", points: 500, foo: 10, bar: 20, bang: "some text" }
...
Eu posso executar o equivalente aproximado de um DENSE_RANK da seguinte forma:
var m = function() {
++g_counter;
if ((this.player == "joe") && (g_scores.length != g_fake_limit)) {
g_scores.push({
player: this.player,
points: this.points,
foo: this.foo,
bar: this.bar,
bang: this.bang,
rank: g_counter
});
}
if (g_counter == g_final)
{
emit(this._id, g_counter);
}
}}
var r = function (k, v) { }
var f = function(k, v) { return g_scores; }
var test_mapreduce = function (limit) {
var total_scores = db.scores.count();
return db.scores.mapReduce(m, r, {
out: { inline: 1 },
sort: { points: -1 },
finalize: f,
limit: total_scores,
verbose: true,
scope: {
g_counter: 0,
g_final: total_scores,
g_fake_limit: limit,
g_scores:[]
}
}).results[0].value;
}
Para comparação, aqui está a abordagem "ingênua" mencionada em outro lugar:
var test_naive = function(limit) {
var cursor = db.scores.find({player: "joe"}).limit(limit).sort({points: -1});
var scores = [];
cursor.forEach(function(score) {
score.rank = db.scores.count({points: {"$gt": score.points}}) + 1;
scores.push(score);
});
return scores;
}
Comparei as duas abordagens em uma única instância do MongoDB 1.8.2 usando o seguinte código:
var rand = function(max) {
return Math.floor(Math.random() * max);
}
var create_score = function() {
var names = ["joe", "ben", "susan", "kevin", "lucy"]
return { player: names[rand(names.length)], points: rand(1000000), foo: 10, bar: 20, bang: "some kind of example text"};
}
var init_collection = function(total_records) {
db.scores.drop();
for (var i = 0; i != total_records; ++i) {
db.scores.insert(create_score());
}
db.scores.createIndex({points: -1})
}
var benchmark = function(test, count, limit) {
init_collection(count);
var durations = [];
for (var i = 0; i != 5; ++i) {
var start = new Date;
result = test(limit)
var stop = new Date;
durations.push(stop - start);
}
db.scores.drop();
return durations;
}
Embora o MapReduce tenha sido mais rápido do que eu esperava, a abordagem ingênua expulsou-a da água para tamanhos de coleta maiores, especialmente depois que o cache foi aquecido:
> benchmark(test_naive, 1000, 50);
[ 22, 16, 17, 16, 17 ]
> benchmark(test_mapreduce, 1000, 50);
[ 16, 15, 14, 11, 14 ]
>
> benchmark(test_naive, 10000, 50);
[ 56, 16, 17, 16, 17 ]
> benchmark(test_mapreduce, 10000, 50);
[ 154, 109, 116, 109, 109 ]
>
> benchmark(test_naive, 100000, 50);
[ 492, 15, 18, 17, 16 ]
> benchmark(test_mapreduce, 100000, 50);
[ 1595, 1071, 1099, 1108, 1070 ]
>
> benchmark(test_naive, 1000000, 50);
[ 6600, 16, 15, 16, 24 ]
> benchmark(test_mapreduce, 1000000, 50);
[ 17405, 10725, 10768, 10779, 11113 ]
Portanto, por enquanto, parece que a abordagem ingênua é o caminho a seguir, embora eu esteja interessado em ver se a história muda ainda este ano, pois a equipe do MongoDB continua melhorando o desempenho do MapReduce.