Geração simples de ruído


27

Estou procurando gerar ruído parecido com este:

insira a descrição da imagem aquiinsira a descrição da imagem aqui

(imagens cortesia de Understanding Perlin Noise )

Basicamente, estou procurando barulho com muitas pequenas "ondulações". O seguinte é indesejável:

insira a descrição da imagem aqui

Existe algum simples maneiras de fazer isso? Estou estudando o perlin e o simplex há uma semana e não consigo fazê-lo funcionar em JavaScript ou, quando o faço, não tenho os parâmetros corretos para gerar essas imagens ou é torturante. lento.

Entendo que as 3 imagens que publiquei provavelmente poderiam ser obtidas pelo mesmo algoritmo, mas em uma escala diferente, mas não preciso desse algoritmo. Eu só preciso de um algoritmo muito simples para conseguir algo como na primeira imagem idealmente. Talvez algum tipo de desfoque funcione, mas não consigo obter resultados.

Estou desenvolvendo isso em JavaScript, mas qualquer tipo de código ou mesmo uma explicação simples e detalhada funcionará.


3
Para sua informação, o que você quer é claramente o ruído Perlin. O efeito “indesejável” que você menciona consiste em várias oitavas de ruído Perlin adicionadas uma à outra (isso às vezes é chamado de ruído fractal). Você realmente precisa apenas de uma imagem ou deseja que ela mude com o tempo? Em caso afirmativo, que efeito você procura?
sam hocevar

@ SamHocevar Eu quero gerá-lo em tempo real. Eu estou olhando para reproduzir o que é mencionado nesta pergunta .
Xeon06

Encontrei esta implementação de ruído JS perlin e a integrei no jsFiddle . No entanto, o resultado é bem diferente da implementação do ruído perlin no flash, o que me faz pensar nos detalhes da implementação do gerador de ruído perlin que acompanha o flash.
bummzack

@ albummzack de fato, parece que o gerador de Flash gera um ruído perfeito para o meu propósito. Não consigo obter um limiar decente trabalhando com o Fiddle que você postou.
Xeon06

Também estou interessado nisso, portanto, faço uma pergunta no stackoverflow . Espero que tenhamos algumas respostas lá.
bummzack

Respostas:


16

Enquanto as respostas existentes fornecem uma boa maneira de alcançar o que as imagens na pergunta mostram, os comentários revelaram que o objetivo é gerar uma imagem, como mostrado abaixo:

turbulência de ruído permanente

Esse tipo de ruído é bem diferente do ruído mostrado nas imagens da pergunta, pois forma bolhas próximas e isoladas.

Acontece que esse tipo de ruído é chamado turbulência, que (de acordo com este artigo sobre CPU Gems ) é implementado da seguinte maneira (onde noiseestá sua função de ruído Perlin retornando valores de -1..1):

double turbulence(double x, double y, double z, double f) {
    double t = -.5;
    for ( ; f <= W/12 ; f *= 2) // W = Image width in pixels
        t += abs(noise(x,y,z,f) / f);
    return t;
}

A combinação dessa implementação de JavaScript Perlin-noise com a função de turbulência descrita acima gera um ruído bastante semelhante à imagem acima:

ruído de turbulência

O código JavaScript usado para gerar a imagem acima pode ser encontrado neste jsFiddle .


3
Esse é um código estranho, a versão do JavaScript é bem diferente da versão do Java, e a versão do JavaScript é basicamente uma maneira completamente escrita de escrever return Math.abs(this.noise(x,y,z)*2)-.5.
Aaaaaaaaaaaa

@aaaaaaaaaaaa Aceite isso com o próprio Ken Perlin, ele escreveu esse bloco de código específico.
precisa saber é o seguinte

15

Suas imagens de exemplo parecem muito com ruído rosa. É gerado assim:

  • Primeiro, temos algum tipo de ruído aleatório suave. Geralmente, isso é alcançado calculando valores pseudo-aleatórios em pontos com coordenadas inteiras e interpolando esses valores de alguma forma. O resultado nesta fase é semelhante a este:

    insira a descrição da imagem aqui

  • Em seguida, pegamos esse ruído e o "esprememos", aumentando sua frequência. A fórmula mais simples para isso é n2 (x, y) = n1 (x f, y f). Dessa maneira, o padrão de ruído é pressionado f vezes nos dois diretórios. Melhores algoritmos de ruído também giram e / ou convertem o padrão de ruído nesta etapa, a fim de quebrar as regularidades.

  • Em seguida, esse padrão compactado é multiplicado por algum valor (menor que 1) e adicionado ao primeiro padrão. Com efeito, adicionamos pequenas variações de alta frequência sobre o padrão de baixa frequência. O resultado é mais ou menos assim:

    insira a descrição da imagem aqui

  • Os passos 2 e 3 podem ser repetidos várias vezes, adicionando detalhes cada vez mais finos. o resultado líquido geralmente se parece com o seu exemplo com a cruz vermelha. No entanto, observe que temos três parâmetros em nosso algoritmo para jogar:

    • Contagem de oitavas - ou, em outras palavras, número de etapas na geração. Mais etapas significam detalhes mais refinados no padrão resultante.
    • Persistência. É esse valor que é multiplicado em cada etapa. Geralmente, a persistência está entre 0 e 1. Valores altos de persistência geralmente produzem padrões "ruidosos" com muitos pequenos detalhes. Baixa persistência cria padrões suaves com detalhes sutis.
    • Lacunaridade. É o coeficiente "squeeze" que usamos a cada passo. A lacunaridade funciona um pouco como peristência, mas não exatamente. Baixa lacunaridade produz padrões mais suaves, e alta lacunaridade cria padrões mais nítidos e de alto contraste.

aqui estão alguns exemplos:

Alta persistência: Ruído de alta persistência

Lacunaridade alta: Ruído de lacunaridade alto

Baixa lacunaridade: Baixo ruído de lacunaridade

Brincar com esses parâmetros não é a única coisa que você pode fazer. Uma técnica interessante que pode adicionar caracteres aos padrões de ruído é usar perturbação , ou seja, adicionar algum ruído às coordenadas de entrada da sua função de ruído.

Por exemplo, suponha que você tenha alguma função que gera ruído dadas coordenadas e semente aleatória: Noise(x,y, seed). Do que você pode usar algo parecido Noise(x+Noise(x,y,234), y+Noise(x,y,6544), seed)para obter valor perturbado. Isso pode levar a padrões como este (a perturbação é aplicada ao padrão circular aqui, não ao ruído):

turbulência

Se você quiser saber mais, sugiro que dê uma olhada em libnoise (C ++) ou CoherentNoise (C #). Infelizmente, não conheço nenhuma biblioteca de geração de ruído Javascript.


6

O código está comentado. O crédito é para Sean McCullough. http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf

// Ported from Stefan Gustavson's java implementation
// http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
// Read Stefan's excellent paper for details on how this code works.
//
// Sean McCullough banksean@gmail.com

/**
* You can pass in a random number generator object if you like.
* It is assumed to have a random() method.
*/
var SimplexNoise = function(r) {
if (r == undefined) r = Math;
  this.grad3 = [[1,1,0],[-1,1,0],[1,-1,0],[-1,-1,0],
                                 [1,0,1],[-1,0,1],[1,0,-1],[-1,0,-1],
                                 [0,1,1],[0,-1,1],[0,1,-1],[0,-1,-1]];
  this.p = [];
  for (var i=0; i<256; i++) {
this.p[i] = Math.floor(r.random()*256);
  }
  // To remove the need for index wrapping, double the permutation table length
  this.perm = [];
  for(var i=0; i<512; i++) {
this.perm[i]=this.p[i & 255];
}

  // A lookup table to traverse the simplex around a given point in 4D.
  // Details can be found where this table is used, in the 4D noise method.
  this.simplex = [
    [0,1,2,3],[0,1,3,2],[0,0,0,0],[0,2,3,1],[0,0,0,0],[0,0,0,0],[0,0,0,0],[1,2,3,0],
    [0,2,1,3],[0,0,0,0],[0,3,1,2],[0,3,2,1],[0,0,0,0],[0,0,0,0],[0,0,0,0],[1,3,2,0],
    [0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],
    [1,2,0,3],[0,0,0,0],[1,3,0,2],[0,0,0,0],[0,0,0,0],[0,0,0,0],[2,3,0,1],[2,3,1,0],
    [1,0,2,3],[1,0,3,2],[0,0,0,0],[0,0,0,0],[0,0,0,0],[2,0,3,1],[0,0,0,0],[2,1,3,0],
    [0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],
    [2,0,1,3],[0,0,0,0],[0,0,0,0],[0,0,0,0],[3,0,1,2],[3,0,2,1],[0,0,0,0],[3,1,2,0],
    [2,1,0,3],[0,0,0,0],[0,0,0,0],[0,0,0,0],[3,1,0,2],[0,0,0,0],[3,2,0,1],[3,2,1,0]];
};

SimplexNoise.prototype.dot = function(g, x, y) {
return g[0]*x + g[1]*y;
};

SimplexNoise.prototype.noise = function(xin, yin) {
  var n0, n1, n2; // Noise contributions from the three corners
  // Skew the input space to determine which simplex cell we're in
  var F2 = 0.5*(Math.sqrt(3.0)-1.0);
  var s = (xin+yin)*F2; // Hairy factor for 2D
  var i = Math.floor(xin+s);
  var j = Math.floor(yin+s);
  var G2 = (3.0-Math.sqrt(3.0))/6.0;
  var t = (i+j)*G2;
  var X0 = i-t; // Unskew the cell origin back to (x,y) space
  var Y0 = j-t;
  var x0 = xin-X0; // The x,y distances from the cell origin
  var y0 = yin-Y0;
  // For the 2D case, the simplex shape is an equilateral triangle.
  // Determine which simplex we are in.
  var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
  if(x0>y0) {i1=1; j1=0;} // lower triangle, XY order: (0,0)->(1,0)->(1,1)
  else {i1=0; j1=1;} // upper triangle, YX order: (0,0)->(0,1)->(1,1)
  // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
  // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
  // c = (3-sqrt(3))/6
  var x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
  var y1 = y0 - j1 + G2;
  var x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords
  var y2 = y0 - 1.0 + 2.0 * G2;
  // Work out the hashed gradient indices of the three simplex corners
  var ii = i & 255;
  var jj = j & 255;
  var gi0 = this.perm[ii+this.perm[jj]] % 12;
  var gi1 = this.perm[ii+i1+this.perm[jj+j1]] % 12;
  var gi2 = this.perm[ii+1+this.perm[jj+1]] % 12;
  // Calculate the contribution from the three corners
  var t0 = 0.5 - x0*x0-y0*y0;
  if(t0<0) n0 = 0.0;
  else {
    t0 *= t0;
    n0 = t0 * t0 * this.dot(this.grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient
  }
  var t1 = 0.5 - x1*x1-y1*y1;
  if(t1<0) n1 = 0.0;
  else {
    t1 *= t1;
    n1 = t1 * t1 * this.dot(this.grad3[gi1], x1, y1);
  }
  var t2 = 0.5 - x2*x2-y2*y2;
  if(t2<0) n2 = 0.0;
  else {
    t2 *= t2;
    n2 = t2 * t2 * this.dot(this.grad3[gi2], x2, y2);
  }
  // Add contributions from each corner to get the final noise value.
  // The result is scaled to return values in the interval [-1,1].
  return 70.0 * (n0 + n1 + n2);
};

// 3D simplex noise
SimplexNoise.prototype.noise3d = function(xin, yin, zin) {
  var n0, n1, n2, n3; // Noise contributions from the four corners
  // Skew the input space to determine which simplex cell we're in
  var F3 = 1.0/3.0;
  var s = (xin+yin+zin)*F3; // Very nice and simple skew factor for 3D
  var i = Math.floor(xin+s);
  var j = Math.floor(yin+s);
  var k = Math.floor(zin+s);
  var G3 = 1.0/6.0; // Very nice and simple unskew factor, too
  var t = (i+j+k)*G3;
  var X0 = i-t; // Unskew the cell origin back to (x,y,z) space
  var Y0 = j-t;
  var Z0 = k-t;
  var x0 = xin-X0; // The x,y,z distances from the cell origin
  var y0 = yin-Y0;
  var z0 = zin-Z0;
  // For the 3D case, the simplex shape is a slightly irregular tetrahedron.
  // Determine which simplex we are in.
  var i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
  var i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
  if(x0>=y0) {
    if(y0>=z0)
      { i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } // X Y Z order
      else if(x0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } // X Z Y order
      else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } // Z X Y order
    }
  else { // x0<y0
    if(y0<z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; } // Z Y X order
    else if(x0<z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; } // Y Z X order
    else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; } // Y X Z order
  }
  // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
  // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
  // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
  // c = 1/6.
  var x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
  var y1 = y0 - j1 + G3;
  var z1 = z0 - k1 + G3;
  var x2 = x0 - i2 + 2.0*G3; // Offsets for third corner in (x,y,z) coords
  var y2 = y0 - j2 + 2.0*G3;
  var z2 = z0 - k2 + 2.0*G3;
  var x3 = x0 - 1.0 + 3.0*G3; // Offsets for last corner in (x,y,z) coords
  var y3 = y0 - 1.0 + 3.0*G3;
  var z3 = z0 - 1.0 + 3.0*G3;
  // Work out the hashed gradient indices of the four simplex corners
  var ii = i & 255;
  var jj = j & 255;
  var kk = k & 255;
  var gi0 = this.perm[ii+this.perm[jj+this.perm[kk]]] % 12;
  var gi1 = this.perm[ii+i1+this.perm[jj+j1+this.perm[kk+k1]]] % 12;
  var gi2 = this.perm[ii+i2+this.perm[jj+j2+this.perm[kk+k2]]] % 12;
  var gi3 = this.perm[ii+1+this.perm[jj+1+this.perm[kk+1]]] % 12;
  // Calculate the contribution from the four corners
  var t0 = 0.6 - x0*x0 - y0*y0 - z0*z0;
  if(t0<0) n0 = 0.0;
  else {
    t0 *= t0;
    n0 = t0 * t0 * this.dot(this.grad3[gi0], x0, y0, z0);
  }
  var t1 = 0.6 - x1*x1 - y1*y1 - z1*z1;
  if(t1<0) n1 = 0.0;
  else {
    t1 *= t1;
    n1 = t1 * t1 * this.dot(this.grad3[gi1], x1, y1, z1);
  }
  var t2 = 0.6 - x2*x2 - y2*y2 - z2*z2;
  if(t2<0) n2 = 0.0;
  else {
    t2 *= t2;
    n2 = t2 * t2 * this.dot(this.grad3[gi2], x2, y2, z2);
  }
  var t3 = 0.6 - x3*x3 - y3*y3 - z3*z3;
  if(t3<0) n3 = 0.0;
  else {
    t3 *= t3;
    n3 = t3 * t3 * this.dot(this.grad3[gi3], x3, y3, z3);
  }
  // Add contributions from each corner to get the final noise value.
  // The result is scaled to stay just inside [-1,1]
  return 32.0*(n0 + n1 + n2 + n3);
};

Além disso, se você usar um PRNG com isso, poderá obter facilmente resultados facilmente instáveis

/*
  I've wrapped Makoto Matsumoto and Takuji Nishimura's code in a namespace
  so it's better encapsulated. Now you can have multiple random number generators
  and they won't stomp all over eachother's state.

  If you want to use this as a substitute for Math.random(), use the random()
  method like so:

  var m = new MersenneTwister();
  var randomNumber = m.random();

  You can also call the other genrand_{foo}() methods on the instance.

  If you want to use a specific seed in order to get a repeatable random
  sequence, pass an integer into the constructor:

  var m = new MersenneTwister(123);

  and that will always produce the same random sequence.

  Sean McCullough (banksean@gmail.com)
*/

/* 
   A C-program for MT19937, with initialization improved 2002/1/26.
   Coded by Takuji Nishimura and Makoto Matsumoto.

   Before using, initialize the state by using init_genrand(seed)  
   or init_by_array(init_key, key_length).

   Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
   All rights reserved.                          

   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions
   are met:

     1. Redistributions of source code must retain the above copyright
        notice, this list of conditions and the following disclaimer.

     2. Redistributions in binary form must reproduce the above copyright
        notice, this list of conditions and the following disclaimer in the
        documentation and/or other materials provided with the distribution.

     3. The names of its contributors may not be used to endorse or promote 
        products derived from this software without specific prior written 
        permission.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
   CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.


   Any feedback is very welcome.
   http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
   email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)
*/

var MersenneTwister = function(seed) {
  if (seed == undefined) {
    seed = new Date().getTime();
  } 
  /* Period parameters */  
  this.N = 624;
  this.M = 397;
  this.MATRIX_A = 0x9908b0df;   /* constant vector a */
  this.UPPER_MASK = 0x80000000; /* most significant w-r bits */
  this.LOWER_MASK = 0x7fffffff; /* least significant r bits */

  this.mt = new Array(this.N); /* the array for the state vector */
  this.mti=this.N+1; /* mti==N+1 means mt[N] is not initialized */

  this.init_genrand(seed);
}  

/* initializes mt[N] with a seed */
MersenneTwister.prototype.init_genrand = function(s) {
  this.mt[0] = s >>> 0;
  for (this.mti=1; this.mti<this.N; this.mti++) {
      var s = this.mt[this.mti-1] ^ (this.mt[this.mti-1] >>> 30);
   this.mt[this.mti] = (((((s & 0xffff0000) >>> 16) * 1812433253) << 16) + (s & 0x0000ffff) * 1812433253)
  + this.mti;
      /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
      /* In the previous versions, MSBs of the seed affect   */
      /* only MSBs of the array mt[].                        */
      /* 2002/01/09 modified by Makoto Matsumoto             */
      this.mt[this.mti] >>>= 0;
      /* for >32 bit machines */
  }
}

/* initialize by an array with array-length */
/* init_key is the array for initializing keys */
/* key_length is its length */
/* slight change for C++, 2004/2/26 */
MersenneTwister.prototype.init_by_array = function(init_key, key_length) {
  var i, j, k;
  this.init_genrand(19650218);
  i=1; j=0;
  k = (this.N>key_length ? this.N : key_length);
  for (; k; k--) {
    var s = this.mt[i-1] ^ (this.mt[i-1] >>> 30)
    this.mt[i] = (this.mt[i] ^ (((((s & 0xffff0000) >>> 16) * 1664525) << 16) + ((s & 0x0000ffff) * 1664525)))
      + init_key[j] + j; /* non linear */
    this.mt[i] >>>= 0; /* for WORDSIZE > 32 machines */
    i++; j++;
    if (i>=this.N) { this.mt[0] = this.mt[this.N-1]; i=1; }
    if (j>=key_length) j=0;
  }
  for (k=this.N-1; k; k--) {
    var s = this.mt[i-1] ^ (this.mt[i-1] >>> 30);
    this.mt[i] = (this.mt[i] ^ (((((s & 0xffff0000) >>> 16) * 1566083941) << 16) + (s & 0x0000ffff) * 1566083941))
      - i; /* non linear */
    this.mt[i] >>>= 0; /* for WORDSIZE > 32 machines */
    i++;
    if (i>=this.N) { this.mt[0] = this.mt[this.N-1]; i=1; }
  }

  this.mt[0] = 0x80000000; /* MSB is 1; assuring non-zero initial array */ 
}

/* generates a random number on [0,0xffffffff]-interval */
MersenneTwister.prototype.genrand_int32 = function() {
  var y;
  var mag01 = new Array(0x0, this.MATRIX_A);
  /* mag01[x] = x * MATRIX_A  for x=0,1 */

  if (this.mti >= this.N) { /* generate N words at one time */
    var kk;

    if (this.mti == this.N+1)   /* if init_genrand() has not been called, */
      this.init_genrand(5489); /* a default initial seed is used */

    for (kk=0;kk<this.N-this.M;kk++) {
      y = (this.mt[kk]&this.UPPER_MASK)|(this.mt[kk+1]&this.LOWER_MASK);
      this.mt[kk] = this.mt[kk+this.M] ^ (y >>> 1) ^ mag01[y & 0x1];
    }
    for (;kk<this.N-1;kk++) {
      y = (this.mt[kk]&this.UPPER_MASK)|(this.mt[kk+1]&this.LOWER_MASK);
      this.mt[kk] = this.mt[kk+(this.M-this.N)] ^ (y >>> 1) ^ mag01[y & 0x1];
    }
    y = (this.mt[this.N-1]&this.UPPER_MASK)|(this.mt[0]&this.LOWER_MASK);
    this.mt[this.N-1] = this.mt[this.M-1] ^ (y >>> 1) ^ mag01[y & 0x1];

    this.mti = 0;
  }

  y = this.mt[this.mti++];

  /* Tempering */
  y ^= (y >>> 11);
  y ^= (y << 7) & 0x9d2c5680;
  y ^= (y << 15) & 0xefc60000;
  y ^= (y >>> 18);

  return y >>> 0;
}

/* generates a random number on [0,0x7fffffff]-interval */
MersenneTwister.prototype.genrand_int31 = function() {
  return (this.genrand_int32()>>>1);
}

/* generates a random number on [0,1]-real-interval */
MersenneTwister.prototype.genrand_real1 = function() {
  return this.genrand_int32()*(1.0/4294967295.0); 
  /* divided by 2^32-1 */ 
}

/* generates a random number on [0,1)-real-interval */
MersenneTwister.prototype.random = function() {
  return this.genrand_int32()*(1.0/4294967296.0); 
  /* divided by 2^32 */
}

/* generates a random number on (0,1)-real-interval */
MersenneTwister.prototype.genrand_real3 = function() {
  return (this.genrand_int32() + 0.5)*(1.0/4294967296.0); 
  /* divided by 2^32 */
}

/* generates a random number on [0,1) with 53-bit resolution*/
MersenneTwister.prototype.genrand_res53 = function() { 
  var a=this.genrand_int32()>>>5, b=this.genrand_int32()>>>6; 
  return(a*67108864.0+b)*(1.0/9007199254740992.0); 
} 

/* These real versions are due to Isaku Wada, 2002/01/09 added */

0

Use texturas pré-geradas ou coloque um gerador de textura de ruído permanente em um servidor e consulte imagens de ruído permanente.


Já estou fazendo isso no servidor e preciso que as texturas sejam geradas.
Xeon06

Se você está fazendo isso no servidor, por que o requisito javascript? Que outras tecnologias você pode usar?
Sam Hocevar

@SamHocevar Estou fazendo isso em JavaScript, no servidor. Node.js.
Xeon06

@ Xenon06: se você procura desempenho, acho que precisará de código nativo; felizmente, você pode escrever extensões Node.js. em C ++ .
sam hocevar 12/12

@SamHocevar legal, obrigado pelo link, eu vou dar uma olhada se o meu perf é ruim
Xeon06
Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.