Como @ JohnPowellakaBarça disse, ST_DWithin()
é o caminho a percorrer quando você deseja correção .
No entanto, no meu caso, eu quero apenas uma estimativa aproximada, por isso mesmo ST_DWithin()
era muito caro (no custo da consulta) para minhas necessidades. Eu usei &&
e ST_Expand(box2d)
(não confunda isso com a geometry
versão). Exemplo:
SELECT * FROM profile
WHERE
address_point IS NOT NULL AND
address_point && CAST(ST_Expand(CAST(ST_GeomFromText(:point) AS box2d), 0.5) AS geometry;
O que será imediatamente óbvio é que estamos lidando com graus em vez de metros e usando caixa delimitadora em vez de círculo em um esferóide. Para o meu caso de uso, isso reduz de 24 ms para apenas 2 ms (localmente no SSD). No entanto, para meu banco de dados de produção no AWS RDS PostgreSQL com conexões simultâneas e cotas de IOPS pouco generosas (100 IOPS), a ST_DWithin()
consulta original gasta muito IOPS e pode executar mais de 2000 ms e muito pior quando a cota de IOPS é reduzida.
Isso não é para todos, mas, caso você possa sacrificar alguma precisão pela velocidade (ou para salvar IOPS), essa abordagem pode ser sua. Como você pode ver nos planos de consulta abaixo, ST_DWithin
ainda requer um filtro espacial dentro da verificação de heap de bitmap, além de verificar novamente a Cond, enquanto &&
em uma caixa a geometria não precisa de um filtro e usa apenas a verificação novamente Cond.
Também notei que isso IS NOT NULL
importa, sem ele você ficará com um plano de consulta pior. Parece que o índice GIST não é "inteligente o suficiente" para isso. (é claro que não é necessário se sua coluna for NOT NULL
, no meu caso, é NULL
possível)
Tabela de 20.000 linhas, ST_DWithin(geography, geography, 100000, FALSE)
na AWS RDS 512 MB RAM com 300 IOPS:
Aggregate (cost=4.61..4.62 rows=1 width=8) (actual time=2011.358..2011.358 rows=1 loops=1)
-> Bitmap Heap Scan on matchprofile (cost=2.83..4.61 rows=1 width=0) (actual time=1735.025..2010.635 rows=1974 loops=1)
Recheck Cond: (((address_point IS NOT NULL) AND (address_point && '0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography)) OR ((hometown_point IS NOT NULL) AND (hometown_point && '0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography)))
Filter: (((status)::text = 'ACTIVE'::text) AND ((gender)::text = 'MALE'::text) AND (((address_point IS NOT NULL) AND (address_point && '0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography) AND ('0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography && _st_expand(address_point, '100000'::double precision)) AND _st_dwithin(address_point, '0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography, '100000'::double precision, false)) OR ((hometown_point IS NOT NULL) AND (hometown_point && '0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography) AND ('0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography && _st_expand(hometown_point, '100000'::double precision)) AND _st_dwithin(hometown_point, '0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography, '100000'::double precision, false))))
Rows Removed by Filter: 3323
Heap Blocks: exact=7014
-> BitmapOr (cost=2.83..2.83 rows=1 width=0) (actual time=1716.425..1716.425 rows=0 loops=1)
-> Bitmap Index Scan on ik_matchprofile_address_point (cost=0.00..1.42 rows=1 width=0) (actual time=1167.698..1167.698 rows=16086 loops=1)
Index Cond: ((address_point IS NOT NULL) AND (address_point && '0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography))
-> Bitmap Index Scan on ik_matchprofile_hometown_point (cost=0.00..1.42 rows=1 width=0) (actual time=548.723..548.723 rows=7846 loops=1)
Index Cond: ((hometown_point IS NOT NULL) AND (hometown_point && '0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography))
Planning time: 47.366 ms
Execution time: 2011.429 ms
Tabela de 20000 linhas &&
e ST_Expand(box2d)
na AWS RDS 512 MB RAM com 300 IOPS:
Aggregate (cost=3.85..3.86 rows=1 width=8) (actual time=584.346..584.346 rows=1 loops=1)
-> Bitmap Heap Scan on matchprofile (cost=2.83..3.85 rows=1 width=0) (actual time=555.048..584.083 rows=1154 loops=1)
Recheck Cond: (((address_point IS NOT NULL) AND (address_point && '0103000020E61000000100000005000000744694F606C75A40D49AE61DA7A81DC0744694F606C75A40D49AE61DA7A819C0744694F606075B40D49AE61DA7A819C0744694F606075B40D49AE61DA7A81DC0744694F606C75A40D49AE61DA7A81DC0'::geography)) OR ((hometown_point IS NOT NULL) AND (hometown_point && '0103000020E61000000100000005000000744694F606C75A40D49AE61DA7A81DC0744694F606C75A40D49AE61DA7A819C0744694F606075B40D49AE61DA7A819C0744694F606075B40D49AE61DA7A81DC0744694F606C75A40D49AE61DA7A81DC0'::geography)))
Filter: (((status)::text = 'ACTIVE'::text) AND ((gender)::text = 'MALE'::text))
Rows Removed by Filter: 555
Heap Blocks: exact=3812
-> BitmapOr (cost=2.83..2.83 rows=1 width=0) (actual time=553.091..553.091 rows=0 loops=1)
-> Bitmap Index Scan on ik_matchprofile_address_point (cost=0.00..1.42 rows=1 width=0) (actual time=413.074..413.074 rows=4850 loops=1)
Index Cond: ((address_point IS NOT NULL) AND (address_point && '0103000020E61000000100000005000000744694F606C75A40D49AE61DA7A81DC0744694F606C75A40D49AE61DA7A819C0744694F606075B40D49AE61DA7A819C0744694F606075B40D49AE61DA7A81DC0744694F606C75A40D49AE61DA7A81DC0'::geography))
-> Bitmap Index Scan on ik_matchprofile_hometown_point (cost=0.00..1.42 rows=1 width=0) (actual time=140.014..140.014 rows=3100 loops=1)
Index Cond: ((hometown_point IS NOT NULL) AND (hometown_point && '0103000020E61000000100000005000000744694F606C75A40D49AE61DA7A81DC0744694F606C75A40D49AE61DA7A819C0744694F606075B40D49AE61DA7A819C0744694F606075B40D49AE61DA7A81DC0744694F606C75A40D49AE61DA7A81DC0'::geography))
Planning time: 0.673 ms
Execution time: 584.386 ms
Novamente com uma consulta mais simples:
Tabela de 20.000 linhas, ST_DWithin(geography, geography, 100000, FALSE)
na AWS RDS 512 MB RAM com 300 IOPS:
Aggregate (cost=4.60..4.61 rows=1 width=8) (actual time=36.448..36.448 rows=1 loops=1)
-> Bitmap Heap Scan on matchprofile (cost=2.83..4.60 rows=1 width=0) (actual time=7.694..35.545 rows=2982 loops=1)
Recheck Cond: (((address_point IS NOT NULL) AND (address_point && '0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography)) OR ((hometown_point IS NOT NULL) AND (hometown_point && '0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography)))
Filter: (((address_point IS NOT NULL) AND (address_point && '0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography) AND ('0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography && _st_expand(address_point, '100000'::double precision)) AND _st_dwithin(address_point, '0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography, '100000'::double precision, true)) OR ((hometown_point IS NOT NULL) AND (hometown_point && '0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography) AND ('0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography && _st_expand(hometown_point, '100000'::double precision)) AND _st_dwithin(hometown_point, '0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography, '100000'::double precision, true)))
Rows Removed by Filter: 2322
Heap Blocks: exact=2947
-> BitmapOr (cost=2.83..2.83 rows=1 width=0) (actual time=7.197..7.197 rows=0 loops=1)
-> Bitmap Index Scan on ik_matchprofile_address_point (cost=0.00..1.41 rows=1 width=0) (actual time=5.265..5.265 rows=5680 loops=1)
Index Cond: ((address_point IS NOT NULL) AND (address_point && '0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography))
-> Bitmap Index Scan on ik_matchprofile_hometown_point (cost=0.00..1.41 rows=1 width=0) (actual time=1.930..1.930 rows=2743 loops=1)
Index Cond: ((hometown_point IS NOT NULL) AND (hometown_point && '0101000020E6100000744694F606E75A40D49AE61DA7A81BC0'::geography))
Planning time: 0.479 ms
Execution time: 36.512 ms
Tabela de 20000 linhas &&
e ST_Expand(box2d)
na AWS RDS 512 MB RAM com 300 IOPS:
Aggregate (cost=3.84..3.85 rows=1 width=8) (actual time=6.263..6.264 rows=1 loops=1)
-> Bitmap Heap Scan on matchprofile (cost=2.83..3.84 rows=1 width=0) (actual time=4.295..5.864 rows=1711 loops=1)
Recheck Cond: (((address_point IS NOT NULL) AND (address_point && '0103000020E61000000100000005000000744694F606C75A40D49AE61DA7A81DC0744694F606C75A40D49AE61DA7A819C0744694F606075B40D49AE61DA7A819C0744694F606075B40D49AE61DA7A81DC0744694F606C75A40D49AE61DA7A81DC0'::geography)) OR ((hometown_point IS NOT NULL) AND (hometown_point && '0103000020E61000000100000005000000744694F606C75A40D49AE61DA7A81DC0744694F606C75A40D49AE61DA7A819C0744694F606075B40D49AE61DA7A819C0744694F606075B40D49AE61DA7A81DC0744694F606C75A40D49AE61DA7A81DC0'::geography)))
Heap Blocks: exact=1419
-> BitmapOr (cost=2.83..2.83 rows=1 width=0) (actual time=4.122..4.122 rows=0 loops=1)
-> Bitmap Index Scan on ik_matchprofile_address_point (cost=0.00..1.41 rows=1 width=0) (actual time=3.018..3.018 rows=1693 loops=1)
Index Cond: ((address_point IS NOT NULL) AND (address_point && '0103000020E61000000100000005000000744694F606C75A40D49AE61DA7A81DC0744694F606C75A40D49AE61DA7A819C0744694F606075B40D49AE61DA7A819C0744694F606075B40D49AE61DA7A81DC0744694F606C75A40D49AE61DA7A81DC0'::geography))
-> Bitmap Index Scan on ik_matchprofile_hometown_point (cost=0.00..1.41 rows=1 width=0) (actual time=1.102..1.102 rows=980 loops=1)
Index Cond: ((hometown_point IS NOT NULL) AND (hometown_point && '0103000020E61000000100000005000000744694F606C75A40D49AE61DA7A81DC0744694F606C75A40D49AE61DA7A819C0744694F606075B40D49AE61DA7A819C0744694F606075B40D49AE61DA7A81DC0744694F606C75A40D49AE61DA7A81DC0'::geography))
Planning time: 0.399 ms
Execution time: 6.306 ms