Dadas uma média e uma variância, existe uma chamada de função simples que traçará uma distribuição normal?
Dadas uma média e uma variância, existe uma chamada de função simples que traçará uma distribuição normal?
Respostas:
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as stats
import math
mu = 0
variance = 1
sigma = math.sqrt(variance)
x = np.linspace(mu - 3*sigma, mu + 3*sigma, 100)
plt.plot(x, stats.norm.pdf(x, mu, sigma))
plt.show()

scipy.stats.norm.pdf(x, mu, sigma)vez demlab.normpdf(x, mu, sigma)
mathquando você já importou numpye poderia usar np.sqrt?
mathpara operações escalares, uma vez que, por exemplo, math.sqrté uma magnitude mais rápido do que np.sqrtquando operando em escalares.
Não acho que exista uma função que faça tudo isso em uma única chamada. No entanto, você pode encontrar a função de densidade de probabilidade gaussiana em scipy.stats.
Então, a maneira mais simples que eu poderia inventar é:
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
# Plot between -10 and 10 with .001 steps.
x_axis = np.arange(-10, 10, 0.001)
# Mean = 0, SD = 2.
plt.plot(x_axis, norm.pdf(x_axis,0,2))
plt.show()
Fontes:
norm.pdfpara norm(0, 1).pdf. Isso torna mais fácil se ajustar a outros casos / entender que isso gera um objeto que representa uma variável aleatória.
Use seaborn em vez de eu estou usando distplot of seaborn com média = 5 std = 3 de 1000 valores
value = np.random.normal(loc=5,scale=3,size=1000)
sns.distplot(value)
Você obterá uma curva de distribuição normal
Se você preferir usar uma abordagem passo a passo, você pode considerar uma solução como a que segue
import numpy as np
import matplotlib.pyplot as plt
mean = 0; std = 1; variance = np.square(std)
x = np.arange(-5,5,.01)
f = np.exp(-np.square(x-mean)/2*variance)/(np.sqrt(2*np.pi*variance))
plt.plot(x,f)
plt.ylabel('gaussian distribution')
plt.show()
Acabei de voltar a isso e tive que instalar o scipy, pois matplotlib.mlab me deu a mensagem de erro MatplotlibDeprecationWarning: scipy.stats.norm.pdfao tentar o exemplo acima. Portanto, o exemplo agora é:
%matplotlib inline
import math
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats
mu = 0
variance = 1
sigma = math.sqrt(variance)
x = np.linspace(mu - 3*sigma, mu + 3*sigma, 100)
plt.plot(x, scipy.stats.norm.pdf(x, mu, sigma))
plt.show()
Acredito que seja importante definir a altura, por isso criei esta função:
def my_gauss(x, sigma=1, h=1, mid=0):
from math import exp, pow
variance = pow(sdev, 2)
return h * exp(-pow(x-mid, 2)/(2*variance))
Onde sigmaestá o desvio padrão, hé a altura e midé a média.
Aqui está o resultado usando diferentes alturas e desvios:
você pode obter o cdf facilmente. então pdf via cdf
import numpy as np
import matplotlib.pyplot as plt
import scipy.interpolate
import scipy.stats
def setGridLine(ax):
#http://jonathansoma.com/lede/data-studio/matplotlib/adding-grid-lines-to-a-matplotlib-chart/
ax.set_axisbelow(True)
ax.minorticks_on()
ax.grid(which='major', linestyle='-', linewidth=0.5, color='grey')
ax.grid(which='minor', linestyle=':', linewidth=0.5, color='#a6a6a6')
ax.tick_params(which='both', # Options for both major and minor ticks
top=False, # turn off top ticks
left=False, # turn off left ticks
right=False, # turn off right ticks
bottom=False) # turn off bottom ticks
data1 = np.random.normal(0,1,1000000)
x=np.sort(data1)
y=np.arange(x.shape[0])/(x.shape[0]+1)
f2 = scipy.interpolate.interp1d(x, y,kind='linear')
x2 = np.linspace(x[0],x[-1],1001)
y2 = f2(x2)
y2b = np.diff(y2)/np.diff(x2)
x2b=(x2[1:]+x2[:-1])/2.
f3 = scipy.interpolate.interp1d(x, y,kind='cubic')
x3 = np.linspace(x[0],x[-1],1001)
y3 = f3(x3)
y3b = np.diff(y3)/np.diff(x3)
x3b=(x3[1:]+x3[:-1])/2.
bins=np.arange(-4,4,0.1)
bins_centers=0.5*(bins[1:]+bins[:-1])
cdf = scipy.stats.norm.cdf(bins_centers)
pdf = scipy.stats.norm.pdf(bins_centers)
plt.rcParams["font.size"] = 18
fig, ax = plt.subplots(3,1,figsize=(10,16))
ax[0].set_title("cdf")
ax[0].plot(x,y,label="data")
ax[0].plot(x2,y2,label="linear")
ax[0].plot(x3,y3,label="cubic")
ax[0].plot(bins_centers,cdf,label="ans")
ax[1].set_title("pdf:linear")
ax[1].plot(x2b,y2b,label="linear")
ax[1].plot(bins_centers,pdf,label="ans")
ax[2].set_title("pdf:cubic")
ax[2].plot(x3b,y3b,label="cubic")
ax[2].plot(bins_centers,pdf,label="ans")
for idx in range(3):
ax[idx].legend()
setGridLine(ax[idx])
plt.show()
plt.clf()
plt.close()
%matplotlib inlinefazer o enredo aparecer