Eu entendo o que é livelock, mas eu queria saber se alguém tinha um bom exemplo disso baseado em código? E por código, não quero dizer "duas pessoas tentando passar uma da outra em um corredor". Se eu ler isso de novo, vou perder meu almoço.
Eu entendo o que é livelock, mas eu queria saber se alguém tinha um bom exemplo disso baseado em código? E por código, não quero dizer "duas pessoas tentando passar uma da outra em um corredor". Se eu ler isso de novo, vou perder meu almoço.
Respostas:
Aqui está um exemplo muito simples de livelock em Java, onde marido e mulher estão tentando comer sopa, mas só têm uma colher entre eles. Cada cônjuge é educado demais e passará a colher se o outro ainda não tiver comido.
public class Livelock {
static class Spoon {
private Diner owner;
public Spoon(Diner d) { owner = d; }
public Diner getOwner() { return owner; }
public synchronized void setOwner(Diner d) { owner = d; }
public synchronized void use() {
System.out.printf("%s has eaten!", owner.name);
}
}
static class Diner {
private String name;
private boolean isHungry;
public Diner(String n) { name = n; isHungry = true; }
public String getName() { return name; }
public boolean isHungry() { return isHungry; }
public void eatWith(Spoon spoon, Diner spouse) {
while (isHungry) {
// Don't have the spoon, so wait patiently for spouse.
if (spoon.owner != this) {
try { Thread.sleep(1); }
catch(InterruptedException e) { continue; }
continue;
}
// If spouse is hungry, insist upon passing the spoon.
if (spouse.isHungry()) {
System.out.printf(
"%s: You eat first my darling %s!%n",
name, spouse.getName());
spoon.setOwner(spouse);
continue;
}
// Spouse wasn't hungry, so finally eat
spoon.use();
isHungry = false;
System.out.printf(
"%s: I am stuffed, my darling %s!%n",
name, spouse.getName());
spoon.setOwner(spouse);
}
}
}
public static void main(String[] args) {
final Diner husband = new Diner("Bob");
final Diner wife = new Diner("Alice");
final Spoon s = new Spoon(husband);
new Thread(new Runnable() {
public void run() { husband.eatWith(s, wife); }
}).start();
new Thread(new Runnable() {
public void run() { wife.eatWith(s, husband); }
}).start();
}
}
getOwner
método não precisa ser sincronizado também? Do Java efetivo "a sincronização não tem efeito, a menos que leia e grave ".
Thread.join()
vez de Thread.sleep()
, porque quer esperar que o cônjuge coma?
getOwner
método deve ser sincronizado, pois, mesmo que setOwner
esteja sincronizado, isso não garante que o encadeamento usando getOwner
(ou acessando o campo owner
diretamente) veja as alterações feitas pelo outro encadeamento setOwner
. Este vídeo explica isso com muito cuidado: youtube.com/watch?v=WTVooKLLVT8
synchronized
palavra-chave como setOwner
método, porque ler e escrever é uma ação atômica para a variável de referência.
Comentários irreverentes à parte, um exemplo que se sabe surgir está no código que tenta detectar e lidar com situações de conflito. Se dois encadeamentos detectam um impasse e tentam se afastar um do outro, sem cuidado, eles acabam presos em um loop sempre "se afastando" e nunca conseguindo avançar.
Por "afastar-se", quero dizer que eles soltariam a fechadura e tentariam deixar que o outro a adquirisse. Podemos imaginar a situação com dois threads fazendo isso (pseudocódigo):
// thread 1
getLocks12(lock1, lock2)
{
lock1.lock();
while (lock2.locked())
{
// attempt to step aside for the other thread
lock1.unlock();
wait();
lock1.lock();
}
lock2.lock();
}
// thread 2
getLocks21(lock1, lock2)
{
lock2.lock();
while (lock1.locked())
{
// attempt to step aside for the other thread
lock2.unlock();
wait();
lock2.lock();
}
lock1.lock();
}
Condições de corrida à parte, o que temos aqui é uma situação em que os dois threads, se entrarem ao mesmo tempo, acabam rodando no loop interno sem prosseguir. Obviamente, este é um exemplo simplificado. Uma solução ingênua seria colocar algum tipo de aleatoriedade na quantidade de tempo que os threads esperariam.
A solução correta é sempre respeitar a hierarquia de bloqueio . Escolha uma ordem na qual você adquire os bloqueios e atenha-se a isso. Por exemplo, se os dois encadeamentos sempre adquirirem lock1 antes de lock2, não haverá possibilidade de conflito.
Como não há resposta marcada como resposta aceita, tentei criar um exemplo de bloqueio ativo;
O programa original foi escrito por mim em abril de 2012 para aprender vários conceitos de multithreading. Desta vez, modifiquei-o para criar impasse, condição de corrida, livelock etc.
Então, vamos entender primeiro a declaração do problema;
Cookie Maker Problem
Existem alguns recipientes de ingredientes: ChocoPowederContainer , WheatPowderContainer . O CookieMaker leva uma certa quantidade de pó dos recipientes dos ingredientes para assar um biscoito . Se um fabricante de cookies encontrar um contêiner vazio, ele procurará outro contêiner para economizar tempo. E aguarda até o Filler preencher o recipiente necessário. Existe um Enchedor que verifica o contêiner em intervalos regulares e preenche alguma quantidade se um contêiner precisar dele.
Por favor, verifique o código completo no github ;
Deixe-me explicar sua implementação em breve.
Vamos dar uma olhada no código:
CookieMaker.java
private Integer getMaterial(final Ingredient ingredient) throws Exception{
:
container.lock();
while (!container.getIngredient(quantity)) {
container.empty.await(1000, TimeUnit.MILLISECONDS);
//Thread.sleep(500); //For deadlock
}
container.unlock();
:
}
IngredientContainer.java
public boolean getIngredient(int n) throws Exception {
:
lock();
if (quantityHeld >= n) {
TimeUnit.SECONDS.sleep(2);
quantityHeld -= n;
unlock();
return true;
}
unlock();
return false;
}
Tudo corre bem até o Filler encher os recipientes. Mas se eu esquecer de iniciar o preenchimento ou o preenchimento for inesperado, os sub-threads continuarão alterando seus estados para permitir que outro fabricante vá e verifique o contêiner.
Eu também criei um daemon ThreadTracer que vigia os estados e os deadlocks dos threads. Essa é a saída do console;
2016-09-12 21:31:45.065 :: [Maker_0:WAITING, Maker_1:WAITING, Maker_2:WAITING, Maker_3:WAITING, Maker_4:WAITING, Maker_5:WAITING, Maker_6:WAITING, Maker_7:WAITING, pool-7-thread-1:TIMED_WAITING, pool-7-thread-2:TIMED_WAITING, pool-8-thread-1:TIMED_WAITING, pool-8-thread-2:TIMED_WAITING, pool-6-thread-1:TIMED_WAITING, pool-6-thread-2:TIMED_WAITING, pool-5-thread-1:TIMED_WAITING, pool-5-thread-2:TIMED_WAITING, pool-1-thread-1:TIMED_WAITING, pool-3-thread-1:TIMED_WAITING, pool-2-thread-1:TIMED_WAITING, pool-1-thread-2:TIMED_WAITING, pool-4-thread-1:TIMED_WAITING, pool-4-thread-2:RUNNABLE, pool-3-thread-2:TIMED_WAITING, pool-2-thread-2:TIMED_WAITING]
2016-09-12 21:31:45.065 :: [Maker_0:WAITING, Maker_1:WAITING, Maker_2:WAITING, Maker_3:WAITING, Maker_4:WAITING, Maker_5:WAITING, Maker_6:WAITING, Maker_7:WAITING, pool-7-thread-1:TIMED_WAITING, pool-7-thread-2:TIMED_WAITING, pool-8-thread-1:TIMED_WAITING, pool-8-thread-2:TIMED_WAITING, pool-6-thread-1:TIMED_WAITING, pool-6-thread-2:TIMED_WAITING, pool-5-thread-1:TIMED_WAITING, pool-5-thread-2:TIMED_WAITING, pool-1-thread-1:TIMED_WAITING, pool-3-thread-1:TIMED_WAITING, pool-2-thread-1:TIMED_WAITING, pool-1-thread-2:TIMED_WAITING, pool-4-thread-1:TIMED_WAITING, pool-4-thread-2:TIMED_WAITING, pool-3-thread-2:TIMED_WAITING, pool-2-thread-2:TIMED_WAITING]
WheatPowder Container has 0 only.
2016-09-12 21:31:45.082 :: [Maker_0:WAITING, Maker_1:WAITING, Maker_2:WAITING, Maker_3:WAITING, Maker_4:WAITING, Maker_5:WAITING, Maker_6:WAITING, Maker_7:WAITING, pool-7-thread-1:TIMED_WAITING, pool-7-thread-2:TIMED_WAITING, pool-8-thread-1:TIMED_WAITING, pool-8-thread-2:TIMED_WAITING, pool-6-thread-1:TIMED_WAITING, pool-6-thread-2:TIMED_WAITING, pool-5-thread-1:TIMED_WAITING, pool-5-thread-2:TIMED_WAITING, pool-1-thread-1:TIMED_WAITING, pool-3-thread-1:TIMED_WAITING, pool-2-thread-1:TIMED_WAITING, pool-1-thread-2:TIMED_WAITING, pool-4-thread-1:TIMED_WAITING, pool-4-thread-2:TIMED_WAITING, pool-3-thread-2:TIMED_WAITING, pool-2-thread-2:RUNNABLE]
2016-09-12 21:31:45.082 :: [Maker_0:WAITING, Maker_1:WAITING, Maker_2:WAITING, Maker_3:WAITING, Maker_4:WAITING, Maker_5:WAITING, Maker_6:WAITING, Maker_7:WAITING, pool-7-thread-1:TIMED_WAITING, pool-7-thread-2:TIMED_WAITING, pool-8-thread-1:TIMED_WAITING, pool-8-thread-2:TIMED_WAITING, pool-6-thread-1:TIMED_WAITING, pool-6-thread-2:TIMED_WAITING, pool-5-thread-1:TIMED_WAITING, pool-5-thread-2:TIMED_WAITING, pool-1-thread-1:TIMED_WAITING, pool-3-thread-1:TIMED_WAITING, pool-2-thread-1:TIMED_WAITING, pool-1-thread-2:TIMED_WAITING, pool-4-thread-1:TIMED_WAITING, pool-4-thread-2:TIMED_WAITING, pool-3-thread-2:TIMED_WAITING, pool-2-thread-2:TIMED_WAITING]
Você notará esses sub-threads e alterará seus estados e espera.
Um exemplo real (embora sem código exato) é o bloqueio ativo de dois processos concorrentes na tentativa de corrigir um impasse no servidor SQL, com cada processo usando o mesmo algoritmo de espera e nova tentativa para tentar novamente. Embora seja a sorte do tempo, eu já vi isso acontecer em máquinas separadas com características de desempenho semelhantes em resposta a uma mensagem adicionada a um tópico do EMS (por exemplo, salvar uma atualização de um gráfico de objeto único mais de uma vez) e não poder controlar a ordem de bloqueio.
Uma boa solução nesse caso seria ter consumidores concorrentes (impedir o processamento duplicado o mais alto possível da cadeia, particionando o trabalho em objetos não relacionados).
Uma solução menos desejável (ok, hack sujo) é interromper o azar de tempo (tipo de diferença de força no processamento) antecipadamente ou quebrá-lo após um impasse usando algoritmos diferentes ou algum elemento aleatório. Isso ainda pode ter problemas, porque é possível que a ordem de bloqueio seja "pegajosa" para cada processo, e isso leva um certo tempo mínimo não contabilizado na espera de nova tentativa.
Outra solução (pelo menos para o SQL Server) é tentar um nível de isolamento diferente (por exemplo, instantâneo).
Eu codifiquei o exemplo de duas pessoas passando em um corredor. Os dois threads evitarão um ao outro assim que perceberem que suas direções são as mesmas.
public class LiveLock {
public static void main(String[] args) throws InterruptedException {
Object left = new Object();
Object right = new Object();
Pedestrian one = new Pedestrian(left, right, 0); //one's left is one's left
Pedestrian two = new Pedestrian(right, left, 1); //one's left is two's right, so have to swap order
one.setOther(two);
two.setOther(one);
one.start();
two.start();
}
}
class Pedestrian extends Thread {
private Object l;
private Object r;
private Pedestrian other;
private Object current;
Pedestrian (Object left, Object right, int firstDirection) {
l = left;
r = right;
if (firstDirection==0) {
current = l;
}
else {
current = r;
}
}
void setOther(Pedestrian otherP) {
other = otherP;
}
Object getDirection() {
return current;
}
Object getOppositeDirection() {
if (current.equals(l)) {
return r;
}
else {
return l;
}
}
void switchDirection() throws InterruptedException {
Thread.sleep(100);
current = getOppositeDirection();
System.out.println(Thread.currentThread().getName() + " is stepping aside.");
}
public void run() {
while (getDirection().equals(other.getDirection())) {
try {
switchDirection();
Thread.sleep(100);
} catch (InterruptedException e) {}
}
}
}
Versão C # do código de jelbourn:
using System;
using System.Runtime.CompilerServices;
using System.Threading;
using System.Threading.Tasks;
namespace LiveLockExample
{
static class Program
{
public static void Main(string[] args)
{
var husband = new Diner("Bob");
var wife = new Diner("Alice");
var s = new Spoon(husband);
Task.WaitAll(
Task.Run(() => husband.EatWith(s, wife)),
Task.Run(() => wife.EatWith(s, husband))
);
}
public class Spoon
{
public Spoon(Diner diner)
{
Owner = diner;
}
public Diner Owner { get; private set; }
[MethodImpl(MethodImplOptions.Synchronized)]
public void SetOwner(Diner d) { Owner = d; }
[MethodImpl(MethodImplOptions.Synchronized)]
public void Use()
{
Console.WriteLine("{0} has eaten!", Owner.Name);
}
}
public class Diner
{
public Diner(string n)
{
Name = n;
IsHungry = true;
}
public string Name { get; private set; }
private bool IsHungry { get; set; }
public void EatWith(Spoon spoon, Diner spouse)
{
while (IsHungry)
{
// Don't have the spoon, so wait patiently for spouse.
if (spoon.Owner != this)
{
try
{
Thread.Sleep(1);
}
catch (ThreadInterruptedException e)
{
}
continue;
}
// If spouse is hungry, insist upon passing the spoon.
if (spouse.IsHungry)
{
Console.WriteLine("{0}: You eat first my darling {1}!", Name, spouse.Name);
spoon.SetOwner(spouse);
continue;
}
// Spouse wasn't hungry, so finally eat
spoon.Use();
IsHungry = false;
Console.WriteLine("{0}: I am stuffed, my darling {1}!", Name, spouse.Name);
spoon.SetOwner(spouse);
}
}
}
}
}
Um exemplo aqui pode estar usando um tryLock cronometrado para obter mais de um bloqueio e, se você não puder obtê-los, recue e tente novamente.
boolean tryLockAll(Collection<Lock> locks) {
boolean grabbedAllLocks = false;
for(int i=0; i<locks.size(); i++) {
Lock lock = locks.get(i);
if(!lock.tryLock(5, TimeUnit.SECONDS)) {
grabbedAllLocks = false;
// undo the locks I already took in reverse order
for(int j=i-1; j >= 0; j--) {
lock.unlock();
}
}
}
}
Eu poderia imaginar que esse código seria problemático, pois você tem muitos threads colidindo e aguardando para obter um conjunto de bloqueios. Mas não tenho certeza se isso é muito atraente para mim como um exemplo simples.
tryLockAll()
com os bloqueios na locks
mesma ordem, não haverá livelock.
Versão em Python do código de jelbourn:
import threading
import time
lock = threading.Lock()
class Spoon:
def __init__(self, diner):
self.owner = diner
def setOwner(self, diner):
with lock:
self.owner = diner
def use(self):
with lock:
"{0} has eaten".format(self.owner)
class Diner:
def __init__(self, name):
self.name = name
self.hungry = True
def eatsWith(self, spoon, spouse):
while(self.hungry):
if self != spoon.owner:
time.sleep(1) # blocks thread, not process
continue
if spouse.hungry:
print "{0}: you eat first, {1}".format(self.name, spouse.name)
spoon.setOwner(spouse)
continue
# Spouse was not hungry, eat
spoon.use()
print "{0}: I'm stuffed, {1}".format(self.name, spouse.name)
spoon.setOwner(spouse)
def main():
husband = Diner("Bob")
wife = Diner("Alice")
spoon = Spoon(husband)
t0 = threading.Thread(target=husband.eatsWith, args=(spoon, wife))
t1 = threading.Thread(target=wife.eatsWith, args=(spoon, husband))
t0.start()
t1.start()
t0.join()
t1.join()
if __name__ == "__main__":
main()
Modifico a resposta de @jelbourn. Quando um deles percebe que o outro está com fome, ele (ela) deve soltar a colher e esperar outra notificação, para que aconteça um livelock.
public class LiveLock {
static class Spoon {
Diner owner;
public String getOwnerName() {
return owner.getName();
}
public void setOwner(Diner diner) {
this.owner = diner;
}
public Spoon(Diner diner) {
this.owner = diner;
}
public void use() {
System.out.println(owner.getName() + " use this spoon and finish eat.");
}
}
static class Diner {
public Diner(boolean isHungry, String name) {
this.isHungry = isHungry;
this.name = name;
}
private boolean isHungry;
private String name;
public String getName() {
return name;
}
public void eatWith(Diner spouse, Spoon sharedSpoon) {
try {
synchronized (sharedSpoon) {
while (isHungry) {
while (!sharedSpoon.getOwnerName().equals(name)) {
sharedSpoon.wait();
//System.out.println("sharedSpoon belongs to" + sharedSpoon.getOwnerName())
}
if (spouse.isHungry) {
System.out.println(spouse.getName() + "is hungry,I should give it to him(her).");
sharedSpoon.setOwner(spouse);
sharedSpoon.notifyAll();
} else {
sharedSpoon.use();
sharedSpoon.setOwner(spouse);
isHungry = false;
}
Thread.sleep(500);
}
}
} catch (InterruptedException e) {
System.out.println(name + " is interrupted.");
}
}
}
public static void main(String[] args) {
final Diner husband = new Diner(true, "husband");
final Diner wife = new Diner(true, "wife");
final Spoon sharedSpoon = new Spoon(wife);
Thread h = new Thread() {
@Override
public void run() {
husband.eatWith(wife, sharedSpoon);
}
};
h.start();
Thread w = new Thread() {
@Override
public void run() {
wife.eatWith(husband, sharedSpoon);
}
};
w.start();
try {
Thread.sleep(10000);
} catch (InterruptedException e) {
e.printStackTrace();
}
h.interrupt();
w.interrupt();
try {
h.join();
w.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
package concurrently.deadlock;
import static java.lang.System.out;
/* This is an example of livelock */
public class Dinner {
public static void main(String[] args) {
Spoon spoon = new Spoon();
Dish dish = new Dish();
new Thread(new Husband(spoon, dish)).start();
new Thread(new Wife(spoon, dish)).start();
}
}
class Spoon {
boolean isLocked;
}
class Dish {
boolean isLocked;
}
class Husband implements Runnable {
Spoon spoon;
Dish dish;
Husband(Spoon spoon, Dish dish) {
this.spoon = spoon;
this.dish = dish;
}
@Override
public void run() {
while (true) {
synchronized (spoon) {
spoon.isLocked = true;
out.println("husband get spoon");
try { Thread.sleep(2000); } catch (InterruptedException e) {}
if (dish.isLocked == true) {
spoon.isLocked = false; // give away spoon
out.println("husband pass away spoon");
continue;
}
synchronized (dish) {
dish.isLocked = true;
out.println("Husband is eating!");
}
dish.isLocked = false;
}
spoon.isLocked = false;
}
}
}
class Wife implements Runnable {
Spoon spoon;
Dish dish;
Wife(Spoon spoon, Dish dish) {
this.spoon = spoon;
this.dish = dish;
}
@Override
public void run() {
while (true) {
synchronized (dish) {
dish.isLocked = true;
out.println("wife get dish");
try { Thread.sleep(2000); } catch (InterruptedException e) {}
if (spoon.isLocked == true) {
dish.isLocked = false; // give away dish
out.println("wife pass away dish");
continue;
}
synchronized (spoon) {
spoon.isLocked = true;
out.println("Wife is eating!");
}
spoon.isLocked = false;
}
dish.isLocked = false;
}
}
}