Qual é a maneira do Python de ler um arquivo CSV em um DataFrame do pandas (que posso usar para operações estatísticas, pode ter colunas com tipos diferentes, etc.)?
Meu arquivo CSV "value.txt"
tem o seguinte conteúdo:
Date,"price","factor_1","factor_2"
2012-06-11,1600.20,1.255,1.548
2012-06-12,1610.02,1.258,1.554
2012-06-13,1618.07,1.249,1.552
2012-06-14,1624.40,1.253,1.556
2012-06-15,1626.15,1.258,1.552
2012-06-16,1626.15,1.263,1.558
2012-06-17,1626.15,1.264,1.572
Em R, leríamos este arquivo usando:
price <- read.csv("value.txt")
e isso retornaria um R data.frame:
> price <- read.csv("value.txt")
> price
Date price factor_1 factor_2
1 2012-06-11 1600.20 1.255 1.548
2 2012-06-12 1610.02 1.258 1.554
3 2012-06-13 1618.07 1.249 1.552
4 2012-06-14 1624.40 1.253 1.556
5 2012-06-15 1626.15 1.258 1.552
6 2012-06-16 1626.15 1.263 1.558
7 2012-06-17 1626.15 1.264 1.572
Existe uma maneira Pythônica de obter a mesma funcionalidade?