Programação linear inteira do Mathematica usando desvio e vinculação
Como já foi mencionado, esse problema pode ser resolvido usando a programação linear inteira (que é NP-Hard ). O Mathematica já possui ILP embutido. "To solve an integer linear programming problem Mathematica first solves the equational constraints, reducing the problem to one containing inequality constraints only. Then it uses lattice reduction techniques to put the inequality system in a simpler form. Finally, it solves the simplified optimization problem using a branch-and-bound method."[Consulte Tutorial de otimização restrita no Mathematica ..]
Eu escrevi o seguinte código que utiliza bibliotecas ILP do Mathematica. É surpreendentemente rápido.
solveMatrixBombProblem[problem_, r_, c_] :=
Module[{},
bombEffect[x_, y_, m_, n_] :=
Table[If[(i == x || i == x - 1 || i == x + 1) && (j == y ||
j == y - 1 || j == y + 1), 1, 0], {i, 1, m}, {j, 1, n}];
bombMatrix[m_, n_] :=
Transpose[
Table[Table[
Part[bombEffect[(i - Mod[i, n])/n + 1, Mod[i, n] + 1, m,
n], (j - Mod[j, n])/n + 1, Mod[j, n] + 1], {j, 0,
m*n - 1}], {i, 0, m*n - 1}]];
X := x /@ Range[c*r];
sol = Minimize[{Total[X],
And @@ Thread[bombMatrix[r, c].X >= problem] &&
And @@ Thread[X >= 0] && Total[X] <= 10^100 &&
Element[X, Integers]}, X];
Print["Minimum required bombs = ", sol[[1]]];
Print["A possible solution = ",
MatrixForm[
Table[x[c*i + j + 1] /. sol[[2]], {i, 0, r - 1}, {j, 0,
c - 1}]]];]
Para o exemplo fornecido no problema:
solveMatrixBombProblem[{2, 3, 4, 7, 1, 1, 5, 2, 6, 2, 4, 3, 4, 2, 1, 2, 1, 2, 4, 1, 3, 1, 3, 4, 1, 2, 1, 4, 3, 2, 6, 9, 1, 6, 4}, 7, 5]
Saídas

Para quem lê isso com um algoritmo ganancioso
Experimente o seu código no seguinte problema 10x10:
5 20 7 1 9 8 19 16 11 3
17 8 15 17 12 4 5 16 8 18
4 19 12 11 9 7 4 15 14 6
17 20 4 9 19 8 17 2 10 8
3 9 10 13 8 9 12 12 6 18
16 16 2 10 7 12 17 11 4 15
11 1 15 1 5 11 3 12 8 3
7 11 16 19 17 11 20 2 5 19
5 18 2 17 7 14 19 11 1 6
13 20 8 4 15 10 19 5 11 12
Aqui está separado por vírgulas:
5, 20, 7, 1, 9, 8, 19, 16, 11, 3, 17, 8, 15, 17, 12, 4, 5, 16, 8, 18, 4, 19, 12, 11, 9, 7, 4, 15, 14, 6, 17, 20, 4, 9, 19, 8, 17, 2, 10, 8, 3, 9, 10, 13, 8, 9, 12, 12, 6, 18, 16, 16, 2, 10, 7, 12, 17, 11, 4, 15, 11, 1, 15, 1, 5, 11, 3, 12, 8, 3, 7, 11, 16, 19, 17, 11, 20, 2, 5, 19, 5, 18, 2, 17, 7, 14, 19, 11, 1, 6, 13, 20, 8, 4, 15, 10, 19, 5, 11, 12
Para esse problema, minha solução contém 208 bombas. Aqui está uma solução possível (consegui resolver isso em cerca de 12 segundos).

Como uma maneira de testar os resultados que o Mathematica está produzindo, verifique se o seu algoritmo ganancioso pode melhorar.