Uma solução completa e infalível para o agendamento de threads, que deve render exatamente os mesmos tempos para cada teste, é compilar seu programa para ser independente do SO e inicializar o computador para executar o programa em um ambiente sem SO. No entanto, isso é praticamente impraticável e seria difícil na melhor das hipóteses.
Um bom substituto para deixar o sistema operacional livre é apenas definir a afinidade do encadeamento atual como 1 núcleo e a prioridade como mais alta. Essa alternativa deve fornecer resultados consistentes o suficiente.
Além disso, você deve desativar as otimizações que interferem na depuração, o que para g ++ ou gcc significa adicionar -Og
à linha de comando , para impedir que o código que está sendo testado seja otimizado. O -O0
sinalizador não deve ser usado porque introduz uma sobrecarga extra desnecessária que seria incluída nos resultados de temporização, assim distorcendo a velocidade programada do código.
Pelo contrário, ambos assumindo que você usa -Ofast
(ou pelo menos -O3
) na construção da produção final e ignorando o problema da eliminação de código "inoperante", -Og
executam muito poucas otimizações em comparação com -Ofast
; portanto, -Og
pode deturpar a velocidade real do código no produto final.
Além disso, todos os testes de velocidade (até certo ponto) perduram: no produto final de produção compilado -Ofast
, cada trecho / seção / função do código não é isolado; em vez disso, cada trecho de código flui continuamente para o próximo, permitindo que o compilador se junte, mescle e otimize partes de código em potencial de todo o lugar.
Ao mesmo tempo, se você estiver comparando um trecho de código que faz uso pesado realloc()
, o trecho de código poderá ser executado mais lentamente em um produto de produção com fragmentação de memória alta o suficiente. Portanto, a expressão "o todo é mais do que a soma de suas partes" se aplica a essa situação porque o código na compilação de produção final pode ser notavelmente mais rápido ou mais lento que o snippet individual que você está testando com rapidez.
Uma solução parcial que pode diminuir a incongruência está sendo usada -Ofast
no teste de velocidade COM a adição de asm volatile("" :: "r"(var))
variáveis envolvidas no teste para evitar a eliminação do código morto / loop.
Aqui está um exemplo de como comparar funções de raiz quadrada em um computador com Windows.
// set USE_ASM_TO_PREVENT_ELIMINATION to 0 to prevent `asm volatile("" :: "r"(var))`
// set USE_ASM_TO_PREVENT_ELIMINATION to 1 to enforce `asm volatile("" :: "r"(var))`
#define USE_ASM_TO_PREVENT_ELIMINATION 1
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <chrono>
#include <cmath>
#include <windows.h>
#include <intrin.h>
#pragma intrinsic(__rdtsc)
#include <cstdint>
class Timer {
public:
Timer() : beg_(clock_::now()) {}
void reset() { beg_ = clock_::now(); }
double elapsed() const {
return std::chrono::duration_cast<second_>
(clock_::now() - beg_).count(); }
private:
typedef std::chrono::high_resolution_clock clock_;
typedef std::chrono::duration<double, std::ratio<1> > second_;
std::chrono::time_point<clock_> beg_;
};
unsigned int guess_sqrt32(register unsigned int n) {
register unsigned int g = 0x8000;
if(g*g > n) {
g ^= 0x8000;
}
g |= 0x4000;
if(g*g > n) {
g ^= 0x4000;
}
g |= 0x2000;
if(g*g > n) {
g ^= 0x2000;
}
g |= 0x1000;
if(g*g > n) {
g ^= 0x1000;
}
g |= 0x0800;
if(g*g > n) {
g ^= 0x0800;
}
g |= 0x0400;
if(g*g > n) {
g ^= 0x0400;
}
g |= 0x0200;
if(g*g > n) {
g ^= 0x0200;
}
g |= 0x0100;
if(g*g > n) {
g ^= 0x0100;
}
g |= 0x0080;
if(g*g > n) {
g ^= 0x0080;
}
g |= 0x0040;
if(g*g > n) {
g ^= 0x0040;
}
g |= 0x0020;
if(g*g > n) {
g ^= 0x0020;
}
g |= 0x0010;
if(g*g > n) {
g ^= 0x0010;
}
g |= 0x0008;
if(g*g > n) {
g ^= 0x0008;
}
g |= 0x0004;
if(g*g > n) {
g ^= 0x0004;
}
g |= 0x0002;
if(g*g > n) {
g ^= 0x0002;
}
g |= 0x0001;
if(g*g > n) {
g ^= 0x0001;
}
return g;
}
unsigned int empty_function( unsigned int _input ) {
return _input;
}
unsigned long long empty_ticks=0;
double empty_seconds=0;
Timer my_time;
template<unsigned int benchmark_repetitions>
void benchmark( char* function_name, auto (*function_to_do)( auto ) ) {
register unsigned int i=benchmark_repetitions;
register unsigned long long start=0;
my_time.reset();
start=__rdtsc();
while ( i-- ) {
auto result = (*function_to_do)( i << 7 );
#if USE_ASM_TO_PREVENT_ELIMINATION == 1
asm volatile("" :: "r"(
// There is no data type in C++ that is smaller than a char, so it will
// not throw a segmentation fault error to reinterpret any arbitrary
// data type as a char. Although, the compiler might not like it.
result
));
#endif
}
if ( function_name == nullptr ) {
empty_ticks = (__rdtsc()-start);
empty_seconds = my_time.elapsed();
std::cout<< "Empty:\n" << empty_ticks
<< " ticks\n" << benchmark_repetitions << " repetitions\n"
<< std::setprecision(15) << empty_seconds
<< " seconds\n\n";
} else {
std::cout<< function_name<<":\n" << (__rdtsc()-start-empty_ticks)
<< " ticks\n" << benchmark_repetitions << " repetitions\n"
<< std::setprecision(15) << (my_time.elapsed()-empty_seconds)
<< " seconds\n\n";
}
}
int main( void ) {
void* Cur_Thread= GetCurrentThread();
void* Cur_Process= GetCurrentProcess();
unsigned long long Current_Affinity;
unsigned long long System_Affinity;
unsigned long long furthest_affinity;
unsigned long long nearest_affinity;
if( ! SetThreadPriority(Cur_Thread,THREAD_PRIORITY_TIME_CRITICAL) ) {
SetThreadPriority( Cur_Thread, THREAD_PRIORITY_HIGHEST );
}
if( ! SetPriorityClass(Cur_Process,REALTIME_PRIORITY_CLASS) ) {
SetPriorityClass( Cur_Process, HIGH_PRIORITY_CLASS );
}
GetProcessAffinityMask( Cur_Process, &Current_Affinity, &System_Affinity );
furthest_affinity = 0x8000000000000000ULL>>__builtin_clzll(Current_Affinity);
nearest_affinity = 0x0000000000000001ULL<<__builtin_ctzll(Current_Affinity);
SetProcessAffinityMask( Cur_Process, furthest_affinity );
SetThreadAffinityMask( Cur_Thread, furthest_affinity );
const int repetitions=524288;
benchmark<repetitions>( nullptr, empty_function );
benchmark<repetitions>( "Standard Square Root", standard_sqrt );
benchmark<repetitions>( "Original Guess Square Root", original_guess_sqrt32 );
benchmark<repetitions>( "New Guess Square Root", new_guess_sqrt32 );
SetThreadPriority( Cur_Thread, THREAD_PRIORITY_IDLE );
SetPriorityClass( Cur_Process, IDLE_PRIORITY_CLASS );
SetProcessAffinityMask( Cur_Process, nearest_affinity );
SetThreadAffinityMask( Cur_Thread, nearest_affinity );
for (;;) { getchar(); }
return 0;
}
Além disso, agradeço a Mike Jarvis por seu Timer.
Observe (isso é muito importante) que, se você estiver executando trechos de código maiores, deverá reduzir o número de iterações para evitar que o computador congele.