TLDR: você pode primeiro filtrar sua matriz e depois executar seu mapa, mas isso exigiria duas passagens na matriz (o filtro retorna uma matriz para mapear). Como essa matriz é pequena, é um custo de desempenho muito pequeno. Você também pode fazer uma simples redução. No entanto, se você quiser repensar como isso pode ser feito com uma única passagem pela matriz (ou qualquer tipo de dados), você pode usar uma idéia chamada "transdutores" popularizada por Rich Hickey.
Responda:
Não devemos exigir o aumento do encadeamento de pontos e a operação na matriz, [].map(fn1).filter(f2)...
pois essa abordagem cria matrizes intermediárias na memória em todas as reducing
funções.
A melhor abordagem opera na função de redução real, para que haja apenas uma passagem de dados e nenhuma matriz extra.
A função redutora é a função passada reduce
e pega um acumulador e entrada da fonte e retorna algo que se parece com o acumulador
// 1. create a concat reducing function that can be passed into `reduce`
const concat = (acc, input) => acc.concat([input])
// note that [1,2,3].reduce(concat, []) would return [1,2,3]
// transforming your reducing function by mapping
// 2. create a generic mapping function that can take a reducing function and return another reducing function
const mapping = (changeInput) => (reducing) => (acc, input) => reducing(acc, changeInput(input))
// 3. create your map function that operates on an input
const getSrc = (x) => x.src
const mappingSrc = mapping(getSrc)
// 4. now we can use our `mapSrc` function to transform our original function `concat` to get another reducing function
const inputSources = [{src:'one.html'}, {src:'two.txt'}, {src:'three.json'}]
inputSources.reduce(mappingSrc(concat), [])
// -> ['one.html', 'two.txt', 'three.json']
// remember this is really essentially just
// inputSources.reduce((acc, x) => acc.concat([x.src]), [])
// transforming your reducing function by filtering
// 5. create a generic filtering function that can take a reducing function and return another reducing function
const filtering = (predicate) => (reducing) => (acc, input) => (predicate(input) ? reducing(acc, input): acc)
// 6. create your filter function that operate on an input
const filterJsonAndLoad = (img) => {
console.log(img)
if(img.src.split('.').pop() === 'json') {
// game.loadSprite(...);
return false;
} else {
return true;
}
}
const filteringJson = filtering(filterJsonAndLoad)
// 7. notice the type of input and output of these functions
// concat is a reducing function,
// mapSrc transforms and returns a reducing function
// filterJsonAndLoad transforms and returns a reducing function
// these functions that transform reducing functions are "transducers", termed by Rich Hickey
// source: http://clojure.com/blog/2012/05/15/anatomy-of-reducer.html
// we can pass this all into reduce! and without any intermediate arrays
const sources = inputSources.reduce(filteringJson(mappingSrc(concat)), []);
// [ 'one.html', 'two.txt' ]
// ==================================
// 8. BONUS: compose all the functions
// You can decide to create a composing function which takes an infinite number of transducers to
// operate on your reducing function to compose a computed accumulator without ever creating that
// intermediate array
const composeAll = (...args) => (x) => {
const fns = args
var i = fns.length
while (i--) {
x = fns[i].call(this, x);
}
return x
}
const doABunchOfStuff = composeAll(
filtering((x) => x.src.split('.').pop() !== 'json'),
mapping((x) => x.src),
mapping((x) => x.toUpperCase()),
mapping((x) => x + '!!!')
)
const sources2 = inputSources.reduce(doABunchOfStuff(concat), [])
// ['ONE.HTML!!!', 'TWO.TXT!!!']
Recursos: pós-transdutores ricos de hickey