Tenho dados de uma pesquisa online em que os entrevistados fazem uma série de perguntas de 1 a 3 vezes. O software de pesquisa (Qualtrics) registra esses dados em várias colunas, ou seja, Q3.2 na pesquisa terá colunasQ3.2.1.
, Q3.2.2.
e Q3.2.3.
:
df <- data.frame(
id = 1:10,
time = as.Date('2009-01-01') + 0:9,
Q3.2.1. = rnorm(10, 0, 1),
Q3.2.2. = rnorm(10, 0, 1),
Q3.2.3. = rnorm(10, 0, 1),
Q3.3.1. = rnorm(10, 0, 1),
Q3.3.2. = rnorm(10, 0, 1),
Q3.3.3. = rnorm(10, 0, 1)
)
# Sample data
id time Q3.2.1. Q3.2.2. Q3.2.3. Q3.3.1. Q3.3.2. Q3.3.3.
1 1 2009-01-01 -0.2059165 -0.29177677 -0.7107192 1.52718069 -0.4484351 -1.21550600
2 2 2009-01-02 -0.1981136 -1.19813815 1.1750200 -0.40380049 -1.8376094 1.03588482
3 3 2009-01-03 0.3514795 -0.27425539 1.1171712 -1.02641801 -2.0646661 -0.35353058
...
Quero combinar todas as colunas QN.N * em colunas QN.N individuais organizadas, no final das contas acabando com algo assim:
id time loop_number Q3.2 Q3.3
1 1 2009-01-01 1 -0.20591649 1.52718069
2 2 2009-01-02 1 -0.19811357 -0.40380049
3 3 2009-01-03 1 0.35147949 -1.02641801
...
11 1 2009-01-01 2 -0.29177677 -0.4484351
12 2 2009-01-02 2 -1.19813815 -1.8376094
13 3 2009-01-03 2 -0.27425539 -2.0646661
...
21 1 2009-01-01 3 -0.71071921 -1.21550600
22 2 2009-01-02 3 1.17501999 1.03588482
23 3 2009-01-03 3 1.11717121 -0.35353058
...
A tidyr
biblioteca tem a gather()
função, que funciona muito bem para combinar um conjunto de colunas:
library(dplyr)
library(tidyr)
library(stringr)
df %>% gather(loop_number, Q3.2, starts_with("Q3.2")) %>%
mutate(loop_number = str_sub(loop_number,-2,-2)) %>%
select(id, time, loop_number, Q3.2)
id time loop_number Q3.2
1 1 2009-01-01 1 -0.20591649
2 2 2009-01-02 1 -0.19811357
3 3 2009-01-03 1 0.35147949
...
29 9 2009-01-09 3 -0.58581232
30 10 2009-01-10 3 -2.33393981
O quadro de dados resultante tem 30 linhas, como esperado (10 indivíduos, 3 loops cada). No entanto, reunir um segundo conjunto de colunas não funciona corretamente - torna as duas colunas combinadas Q3.2
eQ3.3
, mas termina com 90 linhas em vez de 30 (todas as combinações de 10 indivíduos, 3 loops de Q3.2 e 3 loops de Q3 .3; as combinações aumentarão substancialmente para cada grupo de colunas nos dados reais):
df %>% gather(loop_number, Q3.2, starts_with("Q3.2")) %>%
gather(loop_number, Q3.3, starts_with("Q3.3")) %>%
mutate(loop_number = str_sub(loop_number,-2,-2))
id time loop_number Q3.2 Q3.3
1 1 2009-01-01 1 -0.20591649 1.52718069
2 2 2009-01-02 1 -0.19811357 -0.40380049
3 3 2009-01-03 1 0.35147949 -1.02641801
...
89 9 2009-01-09 3 -0.58581232 -0.13187024
90 10 2009-01-10 3 -2.33393981 -0.48502131
Existe uma maneira de usar várias chamadas para gather()
assim, combinando pequenos subconjuntos de colunas como este, mantendo o número correto de linhas?
seperate()
para dividir os valores Q3.3 (e além) em suas próprias colunas. Mas isso ainda parece uma solução realmente indireta ...
spread
estou trabalhando em uma solução agora: p
df %>% gather(question_number, Q3.2, starts_with("Q3.")) %>% mutate(loop_number = str_sub(question_number,-2,-2), question_number = str_sub(question_number,1,4)) %>% select(id, time, loop_number, question_number, Q3.2) %>% spread(key = question_number, value = Q3.2)
spread()
. Embora várias chamadas pareçam inevitáveis de qualquer maneira, sejam vários generate()
s que funcionam ou spread()
s ...
df %>% gather(loop_number, Q3.2, starts_with("Q3."))