Como calculo a distância entre dois pontos especificados por latitude e longitude?
Para esclarecimento, eu gostaria da distância em quilômetros; os pontos usam o sistema WGS84 e eu gostaria de entender a precisão relativa das abordagens disponíveis.
Como calculo a distância entre dois pontos especificados por latitude e longitude?
Para esclarecimento, eu gostaria da distância em quilômetros; os pontos usam o sistema WGS84 e eu gostaria de entender a precisão relativa das abordagens disponíveis.
Respostas:
Esse link pode ser útil para você, pois detalha o uso da fórmula de Haversine para calcular a distância.
Excerto:
Esse script [em Javascript] calcula as distâncias de grandes círculos entre os dois pontos - ou seja, a menor distância sobre a superfície da Terra - usando a fórmula 'Haversine'.
function getDistanceFromLatLonInKm(lat1,lon1,lat2,lon2) {
var R = 6371; // Radius of the earth in km
var dLat = deg2rad(lat2-lat1); // deg2rad below
var dLon = deg2rad(lon2-lon1);
var a =
Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.cos(deg2rad(lat1)) * Math.cos(deg2rad(lat2)) *
Math.sin(dLon/2) * Math.sin(dLon/2)
;
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
var d = R * c; // Distance in km
return d;
}
function deg2rad(deg) {
return deg * (Math.PI/180)
}
Math.atan2(Math.sqrt(a), Math.sqrt(1-a))vez de Math.asin(Math.sqrt(h)), qual seria a implementação direta da fórmula que o artigo da Wikipedia usa? É mais eficiente e / ou mais numericamente estável?
(sin(x))²iguais(sin(-x))²
Eu precisava calcular muitas distâncias entre os pontos do meu projeto, então fui em frente e tentei otimizar o código, que encontrei aqui. Em média, em diferentes navegadores, minha nova implementação é executada duas vezes mais rápido que a resposta mais votada.
function distance(lat1, lon1, lat2, lon2) {
var p = 0.017453292519943295; // Math.PI / 180
var c = Math.cos;
var a = 0.5 - c((lat2 - lat1) * p)/2 +
c(lat1 * p) * c(lat2 * p) *
(1 - c((lon2 - lon1) * p))/2;
return 12742 * Math.asin(Math.sqrt(a)); // 2 * R; R = 6371 km
}
Você pode brincar com meu jsPerf e ver os resultados aqui .
Recentemente, eu precisei fazer o mesmo em python, então aqui está uma implementação em python :
from math import cos, asin, sqrt, pi
def distance(lat1, lon1, lat2, lon2):
p = pi/180
a = 0.5 - cos((lat2-lat1)*p)/2 + cos(lat1*p) * cos(lat2*p) * (1-cos((lon2-lon1)*p))/2
return 12742 * asin(sqrt(a)) #2*R*asin...
E por uma questão de completude: Haversine no wiki.
// 2 * R; R = 6371 kmsignifica? e o método atual fornece resposta em km ou milhas? precisa de uma documentação melhor. Graças
Aqui está uma implementação de C #:
static class DistanceAlgorithm
{
const double PIx = 3.141592653589793;
const double RADIUS = 6378.16;
/// <summary>
/// Convert degrees to Radians
/// </summary>
/// <param name="x">Degrees</param>
/// <returns>The equivalent in radians</returns>
public static double Radians(double x)
{
return x * PIx / 180;
}
/// <summary>
/// Calculate the distance between two places.
/// </summary>
/// <param name="lon1"></param>
/// <param name="lat1"></param>
/// <param name="lon2"></param>
/// <param name="lat2"></param>
/// <returns></returns>
public static double DistanceBetweenPlaces(
double lon1,
double lat1,
double lon2,
double lat2)
{
double dlon = Radians(lon2 - lon1);
double dlat = Radians(lat2 - lat1);
double a = (Math.Sin(dlat / 2) * Math.Sin(dlat / 2)) + Math.Cos(Radians(lat1)) * Math.Cos(Radians(lat2)) * (Math.Sin(dlon / 2) * Math.Sin(dlon / 2));
double angle = 2 * Math.Atan2(Math.Sqrt(a), Math.Sqrt(1 - a));
return angle * RADIUS;
}
}
double dlon = Radians(lon2 - lon1);e #double dlat = Radians(lat2 - lat1);
RADIUSvalor precisa ser 6371 como nas outras respostas?
Aqui está uma implementação em java da fórmula Haversine.
public final static double AVERAGE_RADIUS_OF_EARTH_KM = 6371;
public int calculateDistanceInKilometer(double userLat, double userLng,
double venueLat, double venueLng) {
double latDistance = Math.toRadians(userLat - venueLat);
double lngDistance = Math.toRadians(userLng - venueLng);
double a = Math.sin(latDistance / 2) * Math.sin(latDistance / 2)
+ Math.cos(Math.toRadians(userLat)) * Math.cos(Math.toRadians(venueLat))
* Math.sin(lngDistance / 2) * Math.sin(lngDistance / 2);
double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
return (int) (Math.round(AVERAGE_RADIUS_OF_EARTH_KM * c));
}
Observe que aqui estamos arredondando a resposta para o km mais próximo.
6371000como o raio da terra? (o raio médio da terra é 6371000 metros) ou converte quilômetros em metros de sua função?
0.621371
Muito obrigado por tudo isso. Usei o seguinte código no meu aplicativo Objective-C para iPhone:
const double PIx = 3.141592653589793;
const double RADIO = 6371; // Mean radius of Earth in Km
double convertToRadians(double val) {
return val * PIx / 180;
}
-(double)kilometresBetweenPlace1:(CLLocationCoordinate2D) place1 andPlace2:(CLLocationCoordinate2D) place2 {
double dlon = convertToRadians(place2.longitude - place1.longitude);
double dlat = convertToRadians(place2.latitude - place1.latitude);
double a = ( pow(sin(dlat / 2), 2) + cos(convertToRadians(place1.latitude))) * cos(convertToRadians(place2.latitude)) * pow(sin(dlon / 2), 2);
double angle = 2 * asin(sqrt(a));
return angle * RADIO;
}
Latitude e Longitude estão em decimal. Eu não usei min () para a chamada asin (), pois as distâncias que estou usando são tão pequenas que não exigem.
Ele deu respostas incorretas até eu passar os valores em Radianos - agora é praticamente o mesmo que os valores obtidos no aplicativo Map da Apple :-)
Atualização extra:
Se você estiver usando o iOS4 ou posterior, a Apple fornecerá alguns métodos para fazer isso, para que a mesma funcionalidade seja alcançada com:
-(double)kilometresBetweenPlace1:(CLLocationCoordinate2D) place1 andPlace2:(CLLocationCoordinate2D) place2 {
MKMapPoint start, finish;
start = MKMapPointForCoordinate(place1);
finish = MKMapPointForCoordinate(place2);
return MKMetersBetweenMapPoints(start, finish) / 1000;
}
pow(sin(dlat / 2), 2) + cos(convertToRadians(place1.latitude))estão incorretos. Remova-os e o resultado corresponderá ao que recebo quando uso outras implementações nesta página ou implemente a fórmula Haversine da Wikipedia do zero.
()essa quantia em torno dessa quantia, recebo 3869,75. Sem eles, recebo 3935.75, que é praticamente o que uma pesquisa na web aparece.
Esta é uma função PHP simples que fornecerá uma aproximação bastante razoável (com margem de erro de +/- 1%).
<?php
function distance($lat1, $lon1, $lat2, $lon2) {
$pi80 = M_PI / 180;
$lat1 *= $pi80;
$lon1 *= $pi80;
$lat2 *= $pi80;
$lon2 *= $pi80;
$r = 6372.797; // mean radius of Earth in km
$dlat = $lat2 - $lat1;
$dlon = $lon2 - $lon1;
$a = sin($dlat / 2) * sin($dlat / 2) + cos($lat1) * cos($lat2) * sin($dlon / 2) * sin($dlon / 2);
$c = 2 * atan2(sqrt($a), sqrt(1 - $a));
$km = $r * $c;
//echo '<br/>'.$km;
return $km;
}
?>
Como dito antes; a terra não é uma esfera. É como um beisebol velho e velho que Mark McGwire decidiu praticar - está cheio de amolgadelas. Os cálculos mais simples (como este) tratam-no como uma esfera.
Métodos diferentes podem ser mais ou menos precisos, de acordo com o local onde você está neste ovóide irregular E a que distância estão seus pontos (quanto mais próximos eles estiverem, menor será a margem de erro absoluta). Quanto mais precisa for sua expectativa, mais complexa será a matemática.
Para mais informações: distância geográfica da wikipedia
Eu posto aqui meu exemplo de trabalho.
Liste todos os pontos da tabela com distância entre um ponto designado (usamos um ponto aleatório - lat: 45.20327, long: 23.7806) menor que 50 KM, com latitude e longitude, no MySQL (os campos da tabela são coord_lat e coord_long):
Liste todos com DISTÂNCIA <50, em Quilômetros (considerado raio da Terra 6371 KM):
SELECT denumire, (6371 * acos( cos( radians(45.20327) ) * cos( radians( coord_lat ) ) * cos( radians( 23.7806 ) - radians(coord_long) ) + sin( radians(45.20327) ) * sin( radians(coord_lat) ) )) AS distanta
FROM obiective
WHERE coord_lat<>''
AND coord_long<>''
HAVING distanta<50
ORDER BY distanta desc
O exemplo acima foi testado no MySQL 5.0.95 e 5.5.16 (Linux).
Nas outras respostas, uma implementação em r está desaparecido.
Calcular a distância entre dois pontos é bastante direto com a distmfunção do geospherepacote:
distm(p1, p2, fun = distHaversine)
Onde:
p1 = longitude/latitude for point(s)
p2 = longitude/latitude for point(s)
# type of distance calculation
fun = distCosine / distHaversine / distVincentySphere / distVincentyEllipsoid
Como a Terra não é perfeitamente esférica, a fórmula Vincenty para elipsóides é provavelmente a melhor maneira de calcular distâncias. Assim, no geospherepacote você usa então:
distm(p1, p2, fun = distVincentyEllipsoid)
Claro que você não precisa necessariamente usar o geospherepacote, você também pode calcular a distância na base Rcom uma função:
hav.dist <- function(long1, lat1, long2, lat2) {
R <- 6371
diff.long <- (long2 - long1)
diff.lat <- (lat2 - lat1)
a <- sin(diff.lat/2)^2 + cos(lat1) * cos(lat2) * sin(diff.long/2)^2
b <- 2 * asin(pmin(1, sqrt(a)))
d = R * b
return(d)
}
O haversine é definitivamente uma boa fórmula para provavelmente a maioria dos casos, outras respostas já o incluem, então não vou ocupar o espaço. Mas é importante observar que, independentemente da fórmula usada (sim, não apenas uma). Devido à enorme variedade de precisão possível, bem como ao tempo de computação necessário. A escolha da fórmula requer um pouco mais de reflexão do que uma resposta simples e simples.
Esta postagem de uma pessoa da NASA, é a melhor que encontrei ao discutir as opções
http://www.cs.nyu.edu/visual/home/proj/tiger/gisfaq.html
Por exemplo, se você estiver apenas classificando linhas por distância em um raio de 160 quilômetros. A fórmula da terra plana será muito mais rápida que a haversine.
HalfPi = 1.5707963;
R = 3956; /* the radius gives you the measurement unit*/
a = HalfPi - latoriginrad;
b = HalfPi - latdestrad;
u = a * a + b * b;
v = - 2 * a * b * cos(longdestrad - longoriginrad);
c = sqrt(abs(u + v));
return R * c;
Observe que há apenas um cosseno e uma raiz quadrada. Vs 9 deles na fórmula Haversine.
Você pode usar a construção em CLLocationDistance para calcular isso:
CLLocation *location1 = [[CLLocation alloc] initWithLatitude:latitude1 longitude:longitude1];
CLLocation *location2 = [[CLLocation alloc] initWithLatitude:latitude2 longitude:longitude2];
[self distanceInMetersFromLocation:location1 toLocation:location2]
- (int)distanceInMetersFromLocation:(CLLocation*)location1 toLocation:(CLLocation*)location2 {
CLLocationDistance distanceInMeters = [location1 distanceFromLocation:location2];
return distanceInMeters;
}
No seu caso, se você deseja quilômetros, basta dividir por 1000.
Não gosto de adicionar mais uma resposta, mas a API do Google Maps v.3 possui geometria esférica (e mais). Depois de converter seu WGS84 em graus decimais, você pode fazer o seguinte:
<script src="http://maps.google.com/maps/api/js?sensor=false&libraries=geometry" type="text/javascript"></script>
distance = google.maps.geometry.spherical.computeDistanceBetween(
new google.maps.LatLng(fromLat, fromLng),
new google.maps.LatLng(toLat, toLng));
Nenhuma palavra sobre a precisão dos cálculos do Google ou mesmo qual modelo é usado (embora diga "esférico" em vez de "geóide". A propósito, a distância da "linha reta" obviamente será diferente da distância se alguém viaja no superfície da terra que é o que todos parecem presumir.
Implementação em Python A origem é o centro dos Estados Unidos contíguos.
from haversine import haversine
origin = (39.50, 98.35)
paris = (48.8567, 2.3508)
haversine(origin, paris, miles=True)
Para obter a resposta em quilômetros, basta definir milhas = false.
Poderia haver uma solução mais simples e mais correta: o perímetro da Terra é de 40.000 km no equador, cerca de 37.000 no ciclo de Greenwich (ou qualquer longitude). Portanto:
pythagoras = function (lat1, lon1, lat2, lon2) {
function sqr(x) {return x * x;}
function cosDeg(x) {return Math.cos(x * Math.PI / 180.0);}
var earthCyclePerimeter = 40000000.0 * cosDeg((lat1 + lat2) / 2.0);
var dx = (lon1 - lon2) * earthCyclePerimeter / 360.0;
var dy = 37000000.0 * (lat1 - lat2) / 360.0;
return Math.sqrt(sqr(dx) + sqr(dy));
};
Concordo que deve ser afinado, pois eu mesmo disse que é um elipsóide, de modo que o raio a ser multiplicado pelo cosseno varia. Mas é um pouco mais preciso. Comparado com o Google Maps e reduziu o erro significativamente.
Todas as respostas acima assumem que a Terra é uma esfera. No entanto, uma aproximação mais precisa seria a de um esferóide oblato.
a= 6378.137#equitorial radius in km
b= 6356.752#polar radius in km
def Distance(lat1, lons1, lat2, lons2):
lat1=math.radians(lat1)
lons1=math.radians(lons1)
R1=(((((a**2)*math.cos(lat1))**2)+(((b**2)*math.sin(lat1))**2))/((a*math.cos(lat1))**2+(b*math.sin(lat1))**2))**0.5 #radius of earth at lat1
x1=R*math.cos(lat1)*math.cos(lons1)
y1=R*math.cos(lat1)*math.sin(lons1)
z1=R*math.sin(lat1)
lat2=math.radians(lat2)
lons2=math.radians(lons2)
R1=(((((a**2)*math.cos(lat2))**2)+(((b**2)*math.sin(lat2))**2))/((a*math.cos(lat2))**2+(b*math.sin(lat2))**2))**0.5 #radius of earth at lat2
x2=R*math.cos(lat2)*math.cos(lons2)
y2=R*math.cos(lat2)*math.sin(lons2)
z2=R*math.sin(lat2)
return ((x1-x2)**2+(y1-y2)**2+(z1-z2)**2)**0.5
Aqui está a implementação do SQL para calcular a distância em km,
SELECT UserId, ( 3959 * acos( cos( radians( your latitude here ) ) * cos( radians(latitude) ) *
cos( radians(longitude) - radians( your longitude here ) ) + sin( radians( your latitude here ) ) *
sin( radians(latitude) ) ) ) AS distance FROM user HAVING
distance < 5 ORDER BY distance LIMIT 0 , 5;
Para mais detalhes sobre a implementação, programando a linguagem, você pode simplesmente passar pelo script php fornecido aqui
Aqui está uma implementação datilografada da fórmula Haversine
static getDistanceFromLatLonInKm(lat1: number, lon1: number, lat2: number, lon2: number): number {
var deg2Rad = deg => {
return deg * Math.PI / 180;
}
var r = 6371; // Radius of the earth in km
var dLat = deg2Rad(lat2 - lat1);
var dLon = deg2Rad(lon2 - lon1);
var a =
Math.sin(dLat / 2) * Math.sin(dLat / 2) +
Math.cos(deg2Rad(lat1)) * Math.cos(deg2Rad(lat2)) *
Math.sin(dLon / 2) * Math.sin(dLon / 2);
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
var d = r * c; // Distance in km
return d;
}
Como apontado, um cálculo preciso deve levar em conta que a Terra não é uma esfera perfeita. Aqui estão algumas comparações dos vários algoritmos oferecidos aqui:
geoDistance(50,5,58,3)
Haversine: 899 km
Maymenn: 833 km
Keerthana: 897 km
google.maps.geometry.spherical.computeDistanceBetween(): 900 km
geoDistance(50,5,-58,-3)
Haversine: 12030 km
Maymenn: 11135 km
Keerthana: 10310 km
google.maps.geometry.spherical.computeDistanceBetween(): 12044 km
geoDistance(.05,.005,.058,.003)
Haversine: 0.9169 km
Maymenn: 0.851723 km
Keerthana: 0.917964 km
google.maps.geometry.spherical.computeDistanceBetween(): 0.917964 km
geoDistance(.05,80,.058,80.3)
Haversine: 33.37 km
Maymenn: 33.34 km
Keerthana: 33.40767 km
google.maps.geometry.spherical.computeDistanceBetween(): 33.40770 km
Em pequenas distâncias, o algoritmo de Keerthana parece coincidir com o do Google Maps. O Google Maps parece não seguir nenhum algoritmo simples, sugerindo que ele pode ser o método mais preciso aqui.
De qualquer forma, aqui está uma implementação Javascript do algoritmo de Keerthana:
function geoDistance(lat1, lng1, lat2, lng2){
const a = 6378.137; // equitorial radius in km
const b = 6356.752; // polar radius in km
var sq = x => (x*x);
var sqr = x => Math.sqrt(x);
var cos = x => Math.cos(x);
var sin = x => Math.sin(x);
var radius = lat => sqr((sq(a*a*cos(lat))+sq(b*b*sin(lat)))/(sq(a*cos(lat))+sq(b*sin(lat))));
lat1 = lat1 * Math.PI / 180;
lng1 = lng1 * Math.PI / 180;
lat2 = lat2 * Math.PI / 180;
lng2 = lng2 * Math.PI / 180;
var R1 = radius(lat1);
var x1 = R1*cos(lat1)*cos(lng1);
var y1 = R1*cos(lat1)*sin(lng1);
var z1 = R1*sin(lat1);
var R2 = radius(lat2);
var x2 = R2*cos(lat2)*cos(lng2);
var y2 = R2*cos(lat2)*sin(lng2);
var z2 = R2*sin(lat2);
return sqr(sq(x1-x2)+sq(y1-y2)+sq(z1-z2));
}
Este script [em PHP] calcula distâncias entre os dois pontos.
public static function getDistanceOfTwoPoints($source, $dest, $unit='K') {
$lat1 = $source[0];
$lon1 = $source[1];
$lat2 = $dest[0];
$lon2 = $dest[1];
$theta = $lon1 - $lon2;
$dist = sin(deg2rad($lat1)) * sin(deg2rad($lat2)) + cos(deg2rad($lat1)) * cos(deg2rad($lat2)) * cos(deg2rad($theta));
$dist = acos($dist);
$dist = rad2deg($dist);
$miles = $dist * 60 * 1.1515;
$unit = strtoupper($unit);
if ($unit == "K") {
return ($miles * 1.609344);
}
else if ($unit == "M")
{
return ($miles * 1.609344 * 1000);
}
else if ($unit == "N") {
return ($miles * 0.8684);
}
else {
return $miles;
}
}
Implementação Java de acordo com a fórmula Haversine
double calculateDistance(double latPoint1, double lngPoint1,
double latPoint2, double lngPoint2) {
if(latPoint1 == latPoint2 && lngPoint1 == lngPoint2) {
return 0d;
}
final double EARTH_RADIUS = 6371.0; //km value;
//converting to radians
latPoint1 = Math.toRadians(latPoint1);
lngPoint1 = Math.toRadians(lngPoint1);
latPoint2 = Math.toRadians(latPoint2);
lngPoint2 = Math.toRadians(lngPoint2);
double distance = Math.pow(Math.sin((latPoint2 - latPoint1) / 2.0), 2)
+ Math.cos(latPoint1) * Math.cos(latPoint2)
* Math.pow(Math.sin((lngPoint2 - lngPoint1) / 2.0), 2);
distance = 2.0 * EARTH_RADIUS * Math.asin(Math.sqrt(distance));
return distance; //km value
}
Para calcular a distância entre dois pontos em uma esfera, você precisa fazer o cálculo do Grande Círculo .
Existem várias bibliotecas C / C ++ para ajudar na projeção de mapas no MapTools se você precisar suas distâncias em uma superfície plana. Para fazer isso, você precisará da seqüência de projeção dos vários sistemas de coordenadas.
Você também pode encontrar o MapWindow uma ferramenta útil para visualizar os pontos. Também como código aberto, é um guia útil para usar a biblioteca proj.dll, que parece ser a principal biblioteca de projeção de código aberto.
Aqui está a implementação de resposta aceita portada para Java, caso alguém precise.
package com.project529.garage.util;
/**
* Mean radius.
*/
private static double EARTH_RADIUS = 6371;
/**
* Returns the distance between two sets of latitudes and longitudes in meters.
* <p/>
* Based from the following JavaScript SO answer:
* http://stackoverflow.com/questions/27928/calculate-distance-between-two-latitude-longitude-points-haversine-formula,
* which is based on https://en.wikipedia.org/wiki/Haversine_formula (error rate: ~0.55%).
*/
public double getDistanceBetween(double lat1, double lon1, double lat2, double lon2) {
double dLat = toRadians(lat2 - lat1);
double dLon = toRadians(lon2 - lon1);
double a = Math.sin(dLat / 2) * Math.sin(dLat / 2) +
Math.cos(toRadians(lat1)) * Math.cos(toRadians(lat2)) *
Math.sin(dLon / 2) * Math.sin(dLon / 2);
double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
double d = EARTH_RADIUS * c;
return d;
}
public double toRadians(double degrees) {
return degrees * (Math.PI / 180);
}
Aqui está a implementação VB.NET, essa implementação fornecerá o resultado em KM ou Miles com base no valor de Enum que você passar.
Public Enum DistanceType
Miles
KiloMeters
End Enum
Public Structure Position
Public Latitude As Double
Public Longitude As Double
End Structure
Public Class Haversine
Public Function Distance(Pos1 As Position,
Pos2 As Position,
DistType As DistanceType) As Double
Dim R As Double = If((DistType = DistanceType.Miles), 3960, 6371)
Dim dLat As Double = Me.toRadian(Pos2.Latitude - Pos1.Latitude)
Dim dLon As Double = Me.toRadian(Pos2.Longitude - Pos1.Longitude)
Dim a As Double = Math.Sin(dLat / 2) * Math.Sin(dLat / 2) + Math.Cos(Me.toRadian(Pos1.Latitude)) * Math.Cos(Me.toRadian(Pos2.Latitude)) * Math.Sin(dLon / 2) * Math.Sin(dLon / 2)
Dim c As Double = 2 * Math.Asin(Math.Min(1, Math.Sqrt(a)))
Dim result As Double = R * c
Return result
End Function
Private Function toRadian(val As Double) As Double
Return (Math.PI / 180) * val
End Function
End Class
Condensou o cálculo simplificando a fórmula.
Aqui está em Ruby:
include Math
earth_radius_mi = 3959
radians = lambda { |deg| deg * PI / 180 }
coord_radians = lambda { |c| { :lat => radians[c[:lat]], :lng => radians[c[:lng]] } }
# from/to = { :lat => (latitude_in_degrees), :lng => (longitude_in_degrees) }
def haversine_distance(from, to)
from, to = coord_radians[from], coord_radians[to]
cosines_product = cos(to[:lat]) * cos(from[:lat]) * cos(from[:lng] - to[:lng])
sines_product = sin(to[:lat]) * sin(from[:lat])
return earth_radius_mi * acos(cosines_product + sines_product)
end
function getDistanceFromLatLonInKm(lat1,lon1,lat2,lon2,units) {
var R = 6371; // Radius of the earth in km
var dLat = deg2rad(lat2-lat1); // deg2rad below
var dLon = deg2rad(lon2-lon1);
var a =
Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.cos(deg2rad(lat1)) * Math.cos(deg2rad(lat2)) *
Math.sin(dLon/2) * Math.sin(dLon/2)
;
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
var d = R * c;
var miles = d / 1.609344;
if ( units == 'km' ) {
return d;
} else {
return miles;
}}
A solução de Chuck, válida por milhas também.
Aqui está minha implementação em java para calcular a distância através de graus decimais após alguma pesquisa. Eu usei o raio médio do mundo (da wikipedia) em km. Se você deseja milhas por resultado, use o raio do mundo em milhas.
public static double distanceLatLong2(double lat1, double lng1, double lat2, double lng2)
{
double earthRadius = 6371.0d; // KM: use mile here if you want mile result
double dLat = toRadian(lat2 - lat1);
double dLng = toRadian(lng2 - lng1);
double a = Math.pow(Math.sin(dLat/2), 2) +
Math.cos(toRadian(lat1)) * Math.cos(toRadian(lat2)) *
Math.pow(Math.sin(dLng/2), 2);
double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
return earthRadius * c; // returns result kilometers
}
public static double toRadian(double degrees)
{
return (degrees * Math.PI) / 180.0d;
}
No Mysql, use a seguinte função, passe os parâmetros como usando POINT(LONG,LAT)
CREATE FUNCTION `distance`(a POINT, b POINT)
RETURNS double
DETERMINISTIC
BEGIN
RETURN
GLength( LineString(( PointFromWKB(a)), (PointFromWKB(b)))) * 100000; -- To Make the distance in meters
END;
function getDistanceFromLatLonInKm(position1, position2) {
"use strict";
var deg2rad = function (deg) { return deg * (Math.PI / 180); },
R = 6371,
dLat = deg2rad(position2.lat - position1.lat),
dLng = deg2rad(position2.lng - position1.lng),
a = Math.sin(dLat / 2) * Math.sin(dLat / 2)
+ Math.cos(deg2rad(position1.lat))
* Math.cos(deg2rad(position1.lat))
* Math.sin(dLng / 2) * Math.sin(dLng / 2),
c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
return R * c;
}
console.log(getDistanceFromLatLonInKm(
{lat: 48.7931459, lng: 1.9483572},
{lat: 48.827167, lng: 2.2459745}
));
aqui está um exemplo no postgres sql (em km, para versão milhas, substitua 1.609344 por 0.8684 versão)
CREATE OR REPLACE FUNCTION public.geodistance(alat float, alng float, blat
float, blng float)
RETURNS float AS
$BODY$
DECLARE
v_distance float;
BEGIN
v_distance = asin( sqrt(
sin(radians(blat-alat)/2)^2
+ (
(sin(radians(blng-alng)/2)^2) *
cos(radians(alat)) *
cos(radians(blat))
)
)
) * cast('7926.3352' as float) * cast('1.609344' as float) ;
RETURN v_distance;
END
$BODY$
language plpgsql VOLATILE SECURITY DEFINER;
alter function geodistance(alat float, alng float, blat float, blng float)
owner to postgres;
Aqui está outro código convertido para Ruby :
include Math
#Note: from/to = [lat, long]
def get_distance_in_km(from, to)
radians = lambda { |deg| deg * Math.PI / 180 }
radius = 6371 # Radius of the earth in kilometer
dLat = radians[to[0]-from[0]]
dLon = radians[to[1]-from[1]]
cosines_product = Math.sin(dLat/2) * Math.sin(dLat/2) + Math.cos(radians[from[0]]) * Math.cos(radians[to[1]]) * Math.sin(dLon/2) * Math.sin(dLon/2)
c = 2 * Math.atan2(Math.sqrt(cosines_product), Math.sqrt(1-cosines_product))
return radius * c # Distance in kilometer
end
há um bom exemplo aqui para calcular a distância com o PHP http://www.geodatasource.com/developers/php :
function distance($lat1, $lon1, $lat2, $lon2, $unit) {
$theta = $lon1 - $lon2;
$dist = sin(deg2rad($lat1)) * sin(deg2rad($lat2)) + cos(deg2rad($lat1)) * cos(deg2rad($lat2)) * cos(deg2rad($theta));
$dist = acos($dist);
$dist = rad2deg($dist);
$miles = $dist * 60 * 1.1515;
$unit = strtoupper($unit);
if ($unit == "K") {
return ($miles * 1.609344);
} else if ($unit == "N") {
return ($miles * 0.8684);
} else {
return $miles;
}
}