Como imprimir um array numpy bonito sem notação científica e com precisão?


332

Estou curioso para saber se existe alguma maneira de imprimir formatado numpy.arrays, por exemplo, de uma maneira semelhante a esta:

x = 1.23456
print '%.3f' % x

Se eu quiser imprimir os numpy.arraycarros alegóricos, ele imprime várias casas decimais, geralmente no formato 'científico', o que é bastante difícil de ler, mesmo para matrizes de baixa dimensão. No entanto, numpy.arrayaparentemente, deve ser impresso como uma sequência, ou seja, com %s. Existe uma solução para isso?


essa discussão também pode interessar aos que terminam aqui por meio da pesquisa no google.
Foad

Respostas:


558

Você pode usar set_printoptionspara definir a precisão da saída:

import numpy as np
x=np.random.random(10)
print(x)
# [ 0.07837821  0.48002108  0.41274116  0.82993414  0.77610352  0.1023732
#   0.51303098  0.4617183   0.33487207  0.71162095]

np.set_printoptions(precision=3)
print(x)
# [ 0.078  0.48   0.413  0.83   0.776  0.102  0.513  0.462  0.335  0.712]

E suppresssuprime o uso de notação científica para pequenos números:

y=np.array([1.5e-10,1.5,1500])
print(y)
# [  1.500e-10   1.500e+00   1.500e+03]
np.set_printoptions(suppress=True)
print(y)
# [    0.      1.5  1500. ]

Consulte os documentos para set_printoptions para outras opções.


Para aplicar opções de impressão localmente , usando o NumPy 1.15.0 ou posterior, você pode usar o gerenciador de contexto numpy.printoptions . Por exemplo, dentro de with-suite precision=3e suppress=Truesão definidos:

x = np.random.random(10)
with np.printoptions(precision=3, suppress=True):
    print(x)
    # [ 0.073  0.461  0.689  0.754  0.624  0.901  0.049  0.582  0.557  0.348]

Mas fora das with-suiteopções de impressão, retornamos às configurações padrão:

print(x)    
# [ 0.07334334  0.46132615  0.68935231  0.75379645  0.62424021  0.90115836
#   0.04879837  0.58207504  0.55694118  0.34768638]

Se você estiver usando uma versão anterior do NumPy, poderá criar o gerenciador de contexto. Por exemplo,

import numpy as np
import contextlib

@contextlib.contextmanager
def printoptions(*args, **kwargs):
    original = np.get_printoptions()
    np.set_printoptions(*args, **kwargs)
    try:
        yield
    finally: 
        np.set_printoptions(**original)

x = np.random.random(10)
with printoptions(precision=3, suppress=True):
    print(x)
    # [ 0.073  0.461  0.689  0.754  0.624  0.901  0.049  0.582  0.557  0.348]

Para impedir que os zeros sejam removidos do final dos flutuadores:

np.set_printoptionsagora possui um formatterparâmetro que permite especificar uma função de formato para cada tipo.

np.set_printoptions(formatter={'float': '{: 0.3f}'.format})
print(x)

que imprime

[ 0.078  0.480  0.413  0.830  0.776  0.102  0.513  0.462  0.335  0.712]

ao invés de

[ 0.078  0.48   0.413  0.83   0.776  0.102  0.513  0.462  0.335  0.712]

existe um meio de aplicar a formatação apenas à instrução de impressão específica (em vez de definir um formato de saída geral usado por todas as instruções de impressão)?
Bph 28/03

7
@Hiett: Não existe a função NumPy para definir opções de impressão para apenas uma print, mas você pode usar um gerenciador de contexto para criar algo semelhante. Eu editei a postagem acima para mostrar o que quero dizer.
unutbu

2
você np.set_printoptions(precision=3)suprime os zeros finais .. como você os exibe como este [ 0.078 0.480 0.413 0.830 0.776 0.102 0.513 0.462 0.335 0.712]?
Norfeldt 27/07/2013

2
@ Norfeldt: Adicionei uma maneira de fazer isso acima.
unutbu 27/07/2013

1
Isso funciona muito bem. Como observação lateral, você também pode usar set_printoptionsse desejar uma representação de sequência e não necessariamente usar print. Você pode simplesmente chamar __str__()a instância da matriz numpy e obterá a string formatada conforme as opções de impressão definidas.
Jayesh

40

Você pode obter um subconjunto da np.set_printoptionsfuncionalidade no np.array_strcomando, que se aplica apenas a uma única instrução de impressão.

http://docs.scipy.org/doc/numpy/reference/generated/numpy.array_str.html

Por exemplo:

In [27]: x = np.array([[1.1, 0.9, 1e-6]]*3)

In [28]: print x
[[  1.10000000e+00   9.00000000e-01   1.00000000e-06]
 [  1.10000000e+00   9.00000000e-01   1.00000000e-06]
 [  1.10000000e+00   9.00000000e-01   1.00000000e-06]]

In [29]: print np.array_str(x, precision=2)
[[  1.10e+00   9.00e-01   1.00e-06]
 [  1.10e+00   9.00e-01   1.00e-06]
 [  1.10e+00   9.00e-01   1.00e-06]]

In [30]: print np.array_str(x, precision=2, suppress_small=True)
[[ 1.1  0.9  0. ]
 [ 1.1  0.9  0. ]
 [ 1.1  0.9  0. ]]

37

O Unutbu deu uma resposta realmente completa (eles também receberam um +1 de mim), mas aqui está uma alternativa de baixa tecnologia:

>>> x=np.random.randn(5)
>>> x
array([ 0.25276524,  2.28334499, -1.88221637,  0.69949927,  1.0285625 ])
>>> ['{:.2f}'.format(i) for i in x]
['0.25', '2.28', '-1.88', '0.70', '1.03']

Como uma função (usando a format()sintaxe para formatar):

def ndprint(a, format_string ='{0:.2f}'):
    print [format_string.format(v,i) for i,v in enumerate(a)]

Uso:

>>> ndprint(x)
['0.25', '2.28', '-1.88', '0.70', '1.03']

>>> ndprint(x, '{:10.4e}')
['2.5277e-01', '2.2833e+00', '-1.8822e+00', '6.9950e-01', '1.0286e+00']

>>> ndprint(x, '{:.8g}')
['0.25276524', '2.283345', '-1.8822164', '0.69949927', '1.0285625']

O índice da matriz está acessível na cadeia de formato:

>>> ndprint(x, 'Element[{1:d}]={0:.2f}')
['Element[0]=0.25', 'Element[1]=2.28', 'Element[2]=-1.88', 'Element[3]=0.70', 'Element[4]=1.03']

15

O AY Numpy 1.15 (data de lançamento pendente) incluirá um gerenciador de contexto para definir as opções de impressão localmente . Isso significa que o seguinte funcionará da mesma forma que o exemplo correspondente na resposta aceita (por unutbu e Neil G) sem precisar escrever seu próprio gerenciador de contexto. Por exemplo, usando o exemplo deles:

x = np.random.random(10)
with np.printoptions(precision=3, suppress=True):
    print(x)
    # [ 0.073  0.461  0.689  0.754  0.624  0.901  0.049  0.582  0.557  0.348]

12

A gema que facilita muito a obtenção do resultado como uma string (nas versões numpy de hoje) está oculta na resposta denis: np.array2string

>>> import numpy as np
>>> x=np.random.random(10)
>>> np.array2string(x, formatter={'float_kind':'{0:.3f}'.format})
'[0.599 0.847 0.513 0.155 0.844 0.753 0.920 0.797 0.427 0.420]'

8

Anos depois, outro está abaixo. Mas para o uso diário, eu apenas

np.set_printoptions( threshold=20, edgeitems=10, linewidth=140,
    formatter = dict( float = lambda x: "%.3g" % x ))  # float arrays %.3g

''' printf( "... %.3g ... %.1f  ...", arg, arg ... ) for numpy arrays too

Example:
    printf( """ x: %.3g   A: %.1f   s: %s   B: %s """,
                   x,        A,        "str",  B )

If `x` and `A` are numbers, this is like `"format" % (x, A, "str", B)` in python.
If they're numpy arrays, each element is printed in its own format:
    `x`: e.g. [ 1.23 1.23e-6 ... ]  3 digits
    `A`: [ [ 1 digit after the decimal point ... ] ... ]
with the current `np.set_printoptions()`. For example, with
    np.set_printoptions( threshold=100, edgeitems=3, suppress=True )
only the edges of big `x` and `A` are printed.
`B` is printed as `str(B)`, for any `B` -- a number, a list, a numpy object ...

`printf()` tries to handle too few or too many arguments sensibly,
but this is iffy and subject to change.

How it works:
numpy has a function `np.array2string( A, "%.3g" )` (simplifying a bit).
`printf()` splits the format string, and for format / arg pairs
    format: % d e f g
    arg: try `np.asanyarray()`
-->  %s  np.array2string( arg, format )
Other formats and non-ndarray args are left alone, formatted as usual.

Notes:

`printf( ... end= file= )` are passed on to the python `print()` function.

Only formats `% [optional width . precision] d e f g` are implemented,
not `%(varname)format` .

%d truncates floats, e.g. 0.9 and -0.9 to 0; %.0f rounds, 0.9 to 1 .
%g is the same as %.6g, 6 digits.
%% is a single "%" character.

The function `sprintf()` returns a long string. For example,
    title = sprintf( "%s  m %g  n %g  X %.3g",
                    __file__, m, n, X )
    print( title )
    ...
    pl.title( title )

Module globals:
_fmt = "%.3g"  # default for extra args
_squeeze = np.squeeze  # (n,1) (1,n) -> (n,) print in 1 line not n

See also:
http://docs.scipy.org/doc/numpy/reference/generated/numpy.set_printoptions.html
http://docs.python.org/2.7/library/stdtypes.html#string-formatting

'''
# http://stackoverflow.com/questions/2891790/pretty-printing-of-numpy-array


#...............................................................................
from __future__ import division, print_function
import re
import numpy as np

__version__ = "2014-02-03 feb denis"

_splitformat = re.compile( r'''(
    %
    (?<! %% )  # not %%
    -? [ \d . ]*  # optional width.precision
    \w
    )''', re.X )
    # ... %3.0f  ... %g  ... %-10s ...
    # -> ['...' '%3.0f' '...' '%g' '...' '%-10s' '...']
    # odd len, first or last may be ""

_fmt = "%.3g"  # default for extra args
_squeeze = np.squeeze  # (n,1) (1,n) -> (n,) print in 1 line not n

#...............................................................................
def printf( format, *args, **kwargs ):
    print( sprintf( format, *args ), **kwargs )  # end= file=

printf.__doc__ = __doc__


def sprintf( format, *args ):
    """ sprintf( "text %.3g text %4.1f ... %s ... ", numpy arrays or ... )
        %[defg] array -> np.array2string( formatter= )
    """
    args = list(args)
    if not isinstance( format, basestring ):
        args = [format] + args
        format = ""

    tf = _splitformat.split( format )  # [ text %e text %f ... ]
    nfmt = len(tf) // 2
    nargs = len(args)
    if nargs < nfmt:
        args += (nfmt - nargs) * ["?arg?"]
    elif nargs > nfmt:
        tf += (nargs - nfmt) * [_fmt, " "]  # default _fmt

    for j, arg in enumerate( args ):
        fmt = tf[ 2*j + 1 ]
        if arg is None \
        or isinstance( arg, basestring ) \
        or (hasattr( arg, "__iter__" ) and len(arg) == 0):
            tf[ 2*j + 1 ] = "%s"  # %f -> %s, not error
            continue
        args[j], isarray = _tonumpyarray(arg)
        if isarray  and fmt[-1] in "defgEFG":
            tf[ 2*j + 1 ] = "%s"
            fmtfunc = (lambda x: fmt % x)
            formatter = dict( float_kind=fmtfunc, int=fmtfunc )
            args[j] = np.array2string( args[j], formatter=formatter )
    try:
        return "".join(tf) % tuple(args)
    except TypeError:  # shouldn't happen
        print( "error: tf %s  types %s" % (tf, map( type, args )))
        raise


def _tonumpyarray( a ):
    """ a, isarray = _tonumpyarray( a )
        ->  scalar, False
            np.asanyarray(a), float or int
            a, False
    """
    a = getattr( a, "value", a )  # cvxpy
    if np.isscalar(a):
        return a, False
    if hasattr( a, "__iter__" )  and len(a) == 0:
        return a, False
    try:
        # map .value ?
        a = np.asanyarray( a )
    except ValueError:
        return a, False
    if hasattr( a, "dtype" )  and a.dtype.kind in "fi":  # complex ?
        if callable( _squeeze ):
            a = _squeeze( a )  # np.squeeze
        return a, True
    else:
        return a, False


#...............................................................................
if __name__ == "__main__":
    import sys

    n = 5
    seed = 0
        # run this.py n= ...  in sh or ipython
    for arg in sys.argv[1:]:
        exec( arg )
    np.set_printoptions( 1, threshold=4, edgeitems=2, linewidth=80, suppress=True )
    np.random.seed(seed)

    A = np.random.exponential( size=(n,n) ) ** 10
    x = A[0]

    printf( "x: %.3g  \nA: %.1f  \ns: %s  \nB: %s ",
                x,         A,         "str",   A )
    printf( "x %%d: %d", x )
    printf( "x %%.0f: %.0f", x )
    printf( "x %%.1e: %.1e", x )
    printf( "x %%g: %g", x )
    printf( "x %%s uses np printoptions: %s", x )

    printf( "x with default _fmt: ", x )
    printf( "no args" )
    printf( "too few args: %g %g", x )
    printf( x )
    printf( x, x )
    printf( None )
    printf( "[]:", [] )
    printf( "[3]:", [3] )
    printf( np.array( [] ))
    printf( [[]] )  # squeeze

6

E aqui está o que eu uso, e é bastante simples:

print(np.vectorize("%.2f".__mod__)(sparse))

3

Fiquei surpreso ao não ver o aroundmétodo mencionado - significa não mexer nas opções de impressão.

import numpy as np

x = np.random.random([5,5])
print(np.around(x,decimals=3))

Output:
[[0.475 0.239 0.183 0.991 0.171]
 [0.231 0.188 0.235 0.335 0.049]
 [0.87  0.212 0.219 0.9   0.3  ]
 [0.628 0.791 0.409 0.5   0.319]
 [0.614 0.84  0.812 0.4   0.307]]

2

Muitas vezes, quero que colunas diferentes tenham formatos diferentes. Aqui está como eu imprimo uma matriz 2D simples usando alguma variedade na formatação, convertendo (fatias de) minha matriz NumPy em uma tupla:

import numpy as np
dat = np.random.random((10,11))*100  # Array of random values between 0 and 100
print(dat)                           # Lines get truncated and are hard to read
for i in range(10):
    print((4*"%6.2f"+7*"%9.4f") % tuple(dat[i,:]))

1

numpy.char.modtambém pode ser útil, dependendo dos detalhes da sua aplicação, por exemplo: numpy.char.mod('Value=%4.2f', numpy.arange(5, 10, 0.1))retornará uma matriz de caracteres com os elementos "Valor = 5,00", "Valor = 5,10" etc. (como um exemplo artificial).


1

As matrizes numpy têm o método round(precision)que retorna uma nova matriz numpy com elementos arredondados de acordo.

import numpy as np

x = np.random.random([5,5])
print(x.round(3))

1
Isso funcionou para mim ao passar o array para um matplotlib ylabel, obrigado
Hans

1

Acho que o formato de flutuação usual {: 9.5f} funciona corretamente - suprimindo notações eletrônicas de pequeno valor - ao exibir uma lista ou uma matriz usando um loop. Mas esse formato às vezes falha em suprimir sua notação eletrônica quando um formatador possui vários itens em uma única declaração de impressão. Por exemplo:

import numpy as np
np.set_printoptions(suppress=True)
a3 = 4E-3
a4 = 4E-4
a5 = 4E-5
a6 = 4E-6
a7 = 4E-7
a8 = 4E-8
#--first, display separate numbers-----------
print('Case 3:  a3, a4, a5:             {:9.5f}{:9.5f}{:9.5f}'.format(a3,a4,a5))
print('Case 4:  a3, a4, a5, a6:         {:9.5f}{:9.5f}{:9.5f}{:9.5}'.format(a3,a4,a5,a6))
print('Case 5:  a3, a4, a5, a6, a7:     {:9.5f}{:9.5f}{:9.5f}{:9.5}{:9.5f}'.format(a3,a4,a5,a6,a7))
print('Case 6:  a3, a4, a5, a6, a7, a8: {:9.5f}{:9.5f}{:9.5f}{:9.5f}{:9.5}{:9.5f}'.format(a3,a4,a5,a6,a7,a8))
#---second, display a list using a loop----------
myList = [a3,a4,a5,a6,a7,a8]
print('List 6:  a3, a4, a5, a6, a7, a8: ', end='')
for x in myList: 
    print('{:9.5f}'.format(x), end='')
print()
#---third, display a numpy array using a loop------------
myArray = np.array(myList)
print('Array 6: a3, a4, a5, a6, a7, a8: ', end='')
for x in myArray:
    print('{:9.5f}'.format(x), end='')
print()

Meus resultados mostram o erro nos casos 4, 5 e 6:

Case 3:  a3, a4, a5:               0.00400  0.00040  0.00004
Case 4:  a3, a4, a5, a6:           0.00400  0.00040  0.00004    4e-06
Case 5:  a3, a4, a5, a6, a7:       0.00400  0.00040  0.00004    4e-06  0.00000
Case 6:  a3, a4, a5, a6, a7, a8:   0.00400  0.00040  0.00004  0.00000    4e-07  0.00000
List 6:  a3, a4, a5, a6, a7, a8:   0.00400  0.00040  0.00004  0.00000  0.00000  0.00000
Array 6: a3, a4, a5, a6, a7, a8:   0.00400  0.00040  0.00004  0.00000  0.00000  0.00000

Não tenho explicação para isso e, portanto, sempre uso um loop para saída flutuante de vários valores.


1

eu uso

def np_print(array,fmt="10.5f"):
    print (array.size*("{:"+fmt+"}")).format(*array)

Não é difícil modificá-lo para matrizes multidimensionais.


0

Ainda outra opção é usar o decimalmódulo:

import numpy as np
from decimal import *

arr = np.array([  56.83,  385.3 ,    6.65,  126.63,   85.76,  192.72,  112.81, 10.55])
arr2 = [str(Decimal(i).quantize(Decimal('.01'))) for i in arr]

# ['56.83', '385.30', '6.65', '126.63', '85.76', '192.72', '112.81', '10.55']
Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.