Contando inversões em uma matriz


108

Estou projetando um algoritmo para fazer o seguinte: Dado array A[1... n], para cada i < j, encontre todos os pares de inversão de forma que A[i] > A[j]. Estou usando a classificação por mesclagem e copiando o array A para o array B e comparando os dois arrays, mas estou tendo dificuldade para ver como posso usar isso para encontrar o número de inversões. Qualquer sugestão ou ajuda seria muito apreciada.

Respostas:


139

Então aqui está a solução O (n log n) em java.

long merge(int[] arr, int[] left, int[] right) {
    int i = 0, j = 0, count = 0;
    while (i < left.length || j < right.length) {
        if (i == left.length) {
            arr[i+j] = right[j];
            j++;
        } else if (j == right.length) {
            arr[i+j] = left[i];
            i++;
        } else if (left[i] <= right[j]) {
            arr[i+j] = left[i];
            i++;                
        } else {
            arr[i+j] = right[j];
            count += left.length-i;
            j++;
        }
    }
    return count;
}

long invCount(int[] arr) {
    if (arr.length < 2)
        return 0;

    int m = (arr.length + 1) / 2;
    int left[] = Arrays.copyOfRange(arr, 0, m);
    int right[] = Arrays.copyOfRange(arr, m, arr.length);

    return invCount(left) + invCount(right) + merge(arr, left, right);
}

Este é um tipo de mesclagem quase normal, toda a magia está oculta na função de mesclagem. Observe que, enquanto o algoritmo de classificação remove as inversões. Enquanto o algoritmo de fusão conta o número de inversões removidas (classificadas, pode-se dizer).

O único momento em que as inversões são removidas é quando o algoritmo pega o elemento do lado direito de uma matriz e o mescla com a matriz principal. O número de inversões removidas por esta operação é o número de elementos restantes do array esquerdo a serem mesclados. :)

Espero que seja suficientemente explicativo.


2
Tentei executar isso e não obtive a resposta correta. Você deveria chamar invCount (intArray) dentro de main para começar? Com o intArray sendo o array não classificado de int's? Eu o executei com uma matriz de muitos inteiros e obtive -1887062008 como minha resposta. O que estou fazendo de errado?
Nearpoint

4
+1, veja solução semelhante em C ++ 11 , incluindo uma solução geral baseada em iterador e amostra de teste aleatório usando sequências de 5 a 25 elementos. Aproveitar!.
WhozCraig de

3
Isso não é uma solução. Tentei executá-lo e deu resultados incorretos.
mirgee

2
Desculpe pela pergunta newbish, mas o que há em adicionar left.length - iao contador de inversão? Eu acho que faria sentido apenas adicionar 1, uma vez que você caiu no caso lógico em que a comparação entre os dois subarrays tem um elemento de array esquerdo maior do que o direito. Alguém pode me explicar como se eu tivesse 5 anos?
Alfredo Gallegos

2
@AlfredoGallegos, uma breve ilustração da resposta de Marek. Considere duas matrizes: [6, 8] e [4, 5]. Quando você vir que 6 é maior do que 4, você pega 4 e o coloca arr. Mas não é uma inversão. Você encontrou inversões para todos os elementos na matriz esquerda que são maiores que 6. Em nosso caso, também inclui 8. Portanto, 2 é adicionado a count, que é igual a left.length - i.
ilya

86

Eu o encontrei em tempo O (n * log n) pelo seguinte método.

  1. Mesclar a matriz de classificação A e criar uma cópia (matriz B)
  2. Pegue A [1] e encontre sua posição na matriz classificada B por meio de uma pesquisa binária. O número de inversões para este elemento será um a menos que o número índice de sua posição em B, pois cada número inferior que aparecer após o primeiro elemento de A será uma inversão.

    2a. acumule o número de inversões para contrariar a variável num_inversions.

    2b. remova A [1] da matriz A e também de sua posição correspondente na matriz B

  3. execute novamente a partir da etapa 2 até que não haja mais elementos em A.

Aqui está um exemplo de execução desse algoritmo. Matriz original A = (6, 9, 1, 14, 8, 12, 3, 2)

1: Mesclar classificar e copiar para a matriz B

B = (1, 2, 3, 6, 8, 9, 12, 14)

2: Pegue A [1] e pesquisa binária para encontrá-lo na matriz B

A [1] = 6

B = (1, 2, 3, 6 , 8, 9, 12, 14)

6 está na 4ª posição da matriz B, portanto, há 3 inversões. Sabemos disso porque 6 estava na primeira posição na matriz A, portanto, qualquer elemento de valor inferior que apareça posteriormente na matriz A teria um índice de j> i (já que i neste caso é 1).

2.b: Remova A [1] da matriz A e também de sua posição correspondente na matriz B (os elementos em negrito são removidos).

A = ( 6, 9, 1, 14, 8, 12, 3, 2) = (9, 1, 14, 8, 12, 3, 2)

B = (1, 2, 3, 6, 8, 9, 12, 14) = (1, 2, 3, 8, 9, 12, 14)

3: Execute novamente a partir da etapa 2 nos novos arrays A e B.

A [1] = 9

B = (1, 2, 3, 8, 9, 12, 14)

9 está agora na 5ª posição da matriz B, portanto, há 4 inversões. Sabemos disso porque 9 estava na primeira posição na matriz A, portanto, qualquer elemento de valor inferior que apareça subsequentemente teria um índice de j> i (já que i, nesse caso, é novamente 1). Remova A [1] da matriz A e também de sua posição correspondente na matriz B (os elementos em negrito são removidos)

A = ( 9 , 1, 14, 8, 12, 3, 2) = (1, 14, 8, 12, 3, 2)

B = (1, 2, 3, 8, 9 , 12, 14) = (1, 2, 3, 8, 12, 14)

Continuar nessa linha nos dará o número total de inversões para a matriz A assim que o loop for concluído.

A etapa 1 (classificação por mesclagem) levaria O (n * log n) para ser executada. A etapa 2 seria executada n vezes e, a cada execução, faria uma pesquisa binária que leva O (log n) para um total de O (n * log n). O tempo total de execução seria, portanto, O (n * log n) + O (n * log n) = O (n * log n).

Obrigado pela ajuda. Escrever as matrizes de amostra em um pedaço de papel realmente ajudou a visualizar o problema.


1
por que usar mesclar classificação não classificação rápida?
Alcott,

5
@Alcott Quick sort tem pior tempo de execução de O (n ^ 2), quando a lista já está classificada, e o primeiro pivô é escolhido a cada rodada. O pior caso de mesclagem de classificação é O (n log n)
usuário 482594

29
A etapa de remoção de uma matriz padrão torna seu algoritmo O (n ^ 2), devido ao deslocamento dos valores. (É por isso que a classificação de inserção é O (n ^ 2))
Kyle Butt,

começar com o primeiro elemento do array B e contar os elementos antes dele no array A também daria o mesmo resultado, desde que você os elimine conforme descreveu em sua resposta.
tutak

@el diablo Como remover elementos para evitar complexidade n ^ 2 ??
Jerky

26

Em Python

# O(n log n)

def count_inversion(lst):
    return merge_count_inversion(lst)[1]

def merge_count_inversion(lst):
    if len(lst) <= 1:
        return lst, 0
    middle = int( len(lst) / 2 )
    left, a = merge_count_inversion(lst[:middle])
    right, b = merge_count_inversion(lst[middle:])
    result, c = merge_count_split_inversion(left, right)
    return result, (a + b + c)

def merge_count_split_inversion(left, right):
    result = []
    count = 0
    i, j = 0, 0
    left_len = len(left)
    while i < left_len and j < len(right):
        if left[i] <= right[j]:
            result.append(left[i])
            i += 1
        else:
            result.append(right[j])
            count += left_len - i
            j += 1
    result += left[i:]
    result += right[j:]
    return result, count        


#test code
input_array_1 = []  #0
input_array_2 = [1] #0
input_array_3 = [1, 5]  #0
input_array_4 = [4, 1] #1
input_array_5 = [4, 1, 2, 3, 9] #3
input_array_6 = [4, 1, 3, 2, 9, 5]  #5
input_array_7 = [4, 1, 3, 2, 9, 1]  #8

print count_inversion(input_array_1)
print count_inversion(input_array_2)
print count_inversion(input_array_3)
print count_inversion(input_array_4)
print count_inversion(input_array_5)
print count_inversion(input_array_6)
print count_inversion(input_array_7)

13
Estou perplexo com a forma como isso conseguiu chegar a +13 - não sou particularmente hábil em Python, mas parece quase o mesmo que a versão Java apresentada 2 anos antes , exceto que não fornece nenhuma explicação . Postar respostas em todos os outros idiomas é ativamente prejudicial à IMO - provavelmente existem milhares, se não muitos mais, idiomas - espero que ninguém argumente que deveríamos postar milhares de respostas a uma pergunta - Stack Exchange não foi feito para isso .
Bernhard Barker

1
@tennenrishin Ok, talvez não milhares. Mas onde traçamos a linha? Atualmente, enquanto eu conto, dez respostas já dão a mesma abordagem . Isso é cerca de 43% das respostas (excluindo a não resposta) - um pouco de espaço para ocupar, dado que há meia dúzia de outras abordagens apresentadas aqui. Mesmo se houver apenas 2 respostas para a mesma abordagem, isso ainda dilui desnecessariamente as respostas. E eu fiz um argumento bastante decente para esta resposta, especificamente não sendo útil em meu comentário anterior.
Bernhard Barker

3
@Dukeling Como você, não estou familiarizado com Python e mais familiarizado com Java. Acho essa solução muito menos legível do que a do Java. É lógico então que, para algumas pessoas, o contrário pode ser verdadeiro na mesma medida.
Museful de

3
Para a grande maioria dos usuários, o python está próximo do código sudo. Sinceramente, acho isso muito mais legível do que o java, embora não tenha explicação. Não vejo necessidade de ficar tão irritado se isso ajudar alguns leitores.
Francisco Vargas

2
Esta solução é perfeitamente adequada e legível para usuários de Python. As pessoas querem ver como outros implementaram isso em Python.
Aerin

24

Eu me pergunto por que ninguém mencionou árvores indexadas por binários ainda. Você pode usar um para manter somas de prefixo nos valores de seus elementos de permutação. Então você pode simplesmente prosseguir da direita para a esquerda e contar para cada elemento o número de elementos menores do que à direita:

def count_inversions(a):
  res = 0
  counts = [0]*(len(a)+1)
  rank = { v : i+1 for i, v in enumerate(sorted(a)) }
  for x in reversed(a):
    i = rank[x] - 1
    while i:
      res += counts[i]
      i -= i & -i
    i = rank[x]
    while i <= len(a):
      counts[i] += 1
      i += i & -i
  return res

A complexidade é O (n log n) e o fator constante é muito baixo.


provavelmente a melhor abordagem :)
Nilutpal Borgohain

@NilutpalBorgohain Obrigado :) Parece exigir o menor código entre os candidatos O (n log n), pelo menos.
Niklas B.

1
Obrigado por isso. Qual é o significado da i -= i & -ilinha? E da mesma formai += i & -i
Gerard Condon

1
@GerardCondon é basicamente a estrutura de dados BIT. Um link explicando isso pode ser encontrado na resposta
Niklas B.

TIL sobre árvores Fenwick. Obrigado! Publiquei uma resposta que timeitcompara todas as respostas do Python a essa pergunta, portanto, inclui seu código. Você pode estar interessado em ver os resultados do tempo.
PM 2Ring

14

Eu tinha uma pergunta semelhante a esta para dever de casa, na verdade. Eu estava restrito que deveria ter eficiência O (nlogn).

Usei a ideia que você propôs de usar o Mergesort, pois já tem a eficiência correta. Acabei de inserir um código na função de mesclagem que era basicamente: Sempre que um número da matriz à direita está sendo adicionado à matriz de saída, adiciono ao número total de inversões, a quantidade de números restantes na matriz esquerda.

Isso faz muito sentido para mim, agora que pensei o suficiente. Você está contando quantas vezes há um número maior vindo antes de qualquer número.

hth.


6
Eu apoio sua resposta, a diferença essencial da classificação de mesclagem está na função de mesclagem quando o elemento da 2ª matriz direita é copiado para a matriz de saída => contador de inversão de incremento pelo número de elementos restantes na 1ª matriz à esquerda
Alex.Salnikov

10

O objetivo principal desta resposta é comparar as velocidades das várias versões do Python encontradas aqui, mas também tenho algumas contribuições minhas. (FWIW, acabei de descobrir esta questão enquanto realizava uma pesquisa duplicada).

As velocidades relativas de execução dos algoritmos implementados em CPython podem ser diferentes do que se esperaria de uma análise simples dos algoritmos e da experiência com outras linguagens. Isso porque Python fornece muitas funções e métodos poderosos implementados em C que podem operar em listas e outras coleções com velocidade próxima à que se obteria em uma linguagem totalmente compilada, de modo que essas operações são executadas muito mais rápido do que algoritmos equivalentes implementados "manualmente" com Python código.

O código que tira proveito dessas ferramentas pode frequentemente superar algoritmos teoricamente superiores que tentam fazer tudo com operações Python em itens individuais da coleção. É claro que a quantidade real de dados sendo processados ​​também tem um impacto sobre isso. Mas, para quantidades moderadas de dados, o código que usa um algoritmo O (n²) em execução na velocidade C pode facilmente vencer um algoritmo O (n log n) que faz a maior parte de seu trabalho com operações individuais do Python.

Muitas das respostas postadas para esta questão de contagem de inversão usam um algoritmo baseado em mergesort. Teoricamente, essa é uma boa abordagem, a menos que o tamanho do array seja muito pequeno. Mas o TimSort integrado do Python (um algoritmo de classificação estável híbrido, derivado da classificação por mesclagem e classificação por inserção) é executado na velocidade C, e um mergesort codificado manualmente em Python não pode competir com ele em velocidade.

Uma das soluções mais intrigantes aqui, na resposta postada por Niklas B , usa a classificação embutida para determinar a classificação dos itens da matriz e uma árvore indexada binária (também conhecida como árvore de Fenwick) para armazenar as somas cumulativas necessárias para calcular a inversão contagem. No processo de tentar entender essa estrutura de dados e o algoritmo de Niklas, escrevi algumas variações minhas (postadas abaixo). Mas também descobri que, para tamanhos de lista moderados, é realmente mais rápido usar a sumfunção incorporada do Python do que a adorável árvore Fenwick.

def count_inversions(a):
    total = 0
    counts = [0] * len(a)
    rank = {v: i for i, v in enumerate(sorted(a))}
    for u in reversed(a):
        i = rank[u]
        total += sum(counts[:i])
        counts[i] += 1
    return total

Eventualmente, quando o tamanho da lista chega a cerca de 500, o aspecto O (n²) da chamada sumdentro desse forloop aparece e o desempenho começa a despencar.

Mergesort não é o único tipo O (nlogn) e vários outros podem ser utilizados para realizar a contagem de inversão. A resposta de prasadvk usa uma espécie de árvore binária, porém seu código parece estar em C ++ ou um de seus derivados. Então, adicionei uma versão Python. Eu usei originalmente uma classe para implementar os nós da árvore, mas descobri que um dict é visivelmente mais rápido. Acabei usando list, que é ainda mais rápido, embora torne o código um pouco menos legível.

Um bônus do treesort é que é muito mais fácil de implementar iterativamente do que o mergesort. Python não otimiza a recursão e tem um limite de profundidade de recursão (embora isso possa ser aumentado se você realmente precisar). E, claro, as chamadas de função Python são relativamente lentas, então quando você está tentando otimizar para velocidade, é bom evitar chamadas de função, quando prático.

Outro tipo O (nlogn) é o venerável tipo raiz. A grande vantagem é que ele não compara as chaves entre si. A desvantagem é que funciona melhor em sequências contíguas de inteiros, idealmente uma permutação de inteiros em range(b**m)que bgeralmente é 2. Eu adicionei algumas versões com base na classificação raiz depois de tentar ler Inversões de contagem, Contagem de intervalo ortogonal offline e problemas relacionados que é ligados no cálculo do número de “inversões” em uma permutação .

Para usar a classificação de raiz efetivamente para contar inversões em uma sequência geral seqde comprimento n, podemos criar uma permutação de range(n)que tem o mesmo número de inversões que seq. Podemos fazer isso em (na pior das hipóteses) tempo O (nlogn) via TimSort. O truque é permutar os índices de seqpor classificação seq. É mais fácil explicar isso com um pequeno exemplo.

seq = [15, 14, 11, 12, 10, 13]
b = [t[::-1] for t in enumerate(seq)]
print(b)
b.sort()
print(b)

resultado

[(15, 0), (14, 1), (11, 2), (12, 3), (10, 4), (13, 5)]
[(10, 4), (11, 2), (12, 3), (13, 5), (14, 1), (15, 0)]

Ao classificar os pares (valor, índice) de seq, permutamos os índices de seqcom o mesmo número de trocas que são necessários para colocar seqem sua ordem original a partir de sua ordem de classificação. Podemos criar essa permutação classificando range(n)com uma função chave adequada:

print(sorted(range(len(seq)), key=lambda k: seq[k]))

resultado

[4, 2, 3, 5, 1, 0]

Podemos evitar isso lambdausando seqo .__getitem__método de:

sorted(range(len(seq)), key=seq.__getitem__)

Isso é apenas um pouco mais rápido, mas estamos procurando todas as melhorias de velocidade que pudermos obter. ;)


O código a seguir executa timeittestes em todos os algoritmos Python existentes nesta página, além de alguns dos meus: algumas versões O (n²) de força bruta, algumas variações no algoritmo de Niklas B e, claro, um baseado em mergesort (que escrevi sem me referir às respostas existentes). Ele também tem meu código de treesort baseado em lista derivado aproximadamente do código de prasadvk, e várias funções baseadas em radix sort, algumas usando uma estratégia semelhante às abordagens mergesort, e algumas usando sumou uma árvore de Fenwick.

Este programa mede o tempo de execução de cada função em uma série de listas aleatórias de inteiros; ele também pode verificar se cada função dá os mesmos resultados que as outras e se não modifica a lista de entrada.

Cada timeitchamada fornece um vetor contendo 3 resultados, que classifico. O principal valor a ser observado aqui é o mínimo, os outros valores apenas fornecem uma indicação de quão confiável é esse valor mínimo, conforme discutido na Nota nos documentos do timeitmódulo .

Infelizmente, a saída deste programa é muito grande para incluir nesta resposta, então estou postando em sua própria resposta (wiki da comunidade) .

A saída é de 3 execuções em minha antiga máquina de 2 GHz de núcleo único de 32 bits executando Python 3.6.0 em uma antiga distro derivada do Debian. YMMV. Durante os testes, desliguei meu navegador da Web e desconectei do roteador para minimizar o impacto de outras tarefas na CPU.

A primeira execução testa todas as funções com tamanhos de lista de 5 a 320, com tamanhos de loop de 4096 a 64 (como o tamanho da lista dobra, o tamanho do loop é reduzido pela metade). O conjunto aleatório usado para construir cada lista tem metade do tamanho da própria lista, portanto, é provável que tenhamos muitas duplicatas. Alguns dos algoritmos de contagem de inversão são mais sensíveis a duplicatas do que outros.

A segunda execução usa listas maiores: 640 a 10240 e um tamanho de loop fixo de 8. Para economizar tempo, ele elimina várias das funções mais lentas dos testes. My-força bruta O (n²) funções são apenas maneira muito lenta para estes tamanhos, e como mencionado anteriormente, o meu código que usa sum, o que faz tão bem em pequenas e listas moderadas, simplesmente não pode manter-se em grandes listas.

A execução final cobre tamanhos de lista de 20480 a 655360 e um tamanho de loop fixo de 4, com as 8 funções mais rápidas. Para tamanhos de lista abaixo de 40.000 ou mais, o código de Tim Babych é o vencedor claro. Muito bem, Tim! O código de Niklas B também tem um bom desempenho geral, embora seja superado nas listas menores. O código baseado em bissecção de "python" também se sai muito bem, embora pareça ser um pouco mais lento com listas enormes com muitas duplicatas, provavelmente devido ao whileloop linear que usa para passar por cima dos ingênuos.

No entanto, para tamanhos de lista muito grandes, os algoritmos baseados em bissecção não podem competir com os verdadeiros algoritmos O (nlogn).

#!/usr/bin/env python3

''' Test speeds of various ways of counting inversions in a list

    The inversion count is a measure of how sorted an array is.
    A pair of items in a are inverted if i < j but a[j] > a[i]

    See /programming/337664/counting-inversions-in-an-array

    This program contains code by the following authors:
    mkso
    Niklas B
    B. M.
    Tim Babych
    python
    Zhe Hu
    prasadvk
    noman pouigt
    PM 2Ring

    Timing and verification code by PM 2Ring
    Collated 2017.12.16
    Updated 2017.12.21
'''

from timeit import Timer
from random import seed, randrange
from bisect import bisect, insort_left

seed('A random seed string')

# Merge sort version by mkso
def count_inversion_mkso(lst):
    return merge_count_inversion(lst)[1]

def merge_count_inversion(lst):
    if len(lst) <= 1:
        return lst, 0
    middle = len(lst) // 2
    left, a = merge_count_inversion(lst[:middle])
    right, b = merge_count_inversion(lst[middle:])
    result, c = merge_count_split_inversion(left, right)
    return result, (a + b + c)

def merge_count_split_inversion(left, right):
    result = []
    count = 0
    i, j = 0, 0
    left_len = len(left)
    while i < left_len and j < len(right):
        if left[i] <= right[j]:
            result.append(left[i])
            i += 1
        else:
            result.append(right[j])
            count += left_len - i
            j += 1
    result += left[i:]
    result += right[j:]
    return result, count

# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
# Using a Binary Indexed Tree, aka a Fenwick tree, by Niklas B.
def count_inversions_NiklasB(a):
    res = 0
    counts = [0] * (len(a) + 1)
    rank = {v: i for i, v in enumerate(sorted(a), 1)}
    for x in reversed(a):
        i = rank[x] - 1
        while i:
            res += counts[i]
            i -= i & -i
        i = rank[x]
        while i <= len(a):
            counts[i] += 1
            i += i & -i
    return res

# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
# Merge sort version by B.M
# Modified by PM 2Ring to deal with the global counter
bm_count = 0

def merge_count_BM(seq):
    global bm_count
    bm_count = 0
    sort_bm(seq)
    return bm_count

def merge_bm(l1,l2):
    global bm_count
    l = []
    while l1 and l2:
        if l1[-1] <= l2[-1]:
            l.append(l2.pop())
        else:
            l.append(l1.pop())
            bm_count += len(l2)
    l.reverse()
    return l1 + l2 + l

def sort_bm(l):
    t = len(l) // 2
    return merge_bm(sort_bm(l[:t]), sort_bm(l[t:])) if t > 0 else l

# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
# Bisection based method by Tim Babych
def solution_TimBabych(A):
    sorted_left = []
    res = 0
    for i in range(1, len(A)):
        insort_left(sorted_left, A[i-1])
        # i is also the length of sorted_left
        res += (i - bisect(sorted_left, A[i]))
    return res

# Slightly faster, except for very small lists
def solutionE_TimBabych(A):
    res = 0
    sorted_left = []
    for i, u in enumerate(A):
        # i is also the length of sorted_left
        res += (i - bisect(sorted_left, u))
        insort_left(sorted_left, u)
    return res

# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
# Bisection based method by "python"
def solution_python(A):
    B = list(A)
    B.sort()
    inversion_count = 0
    for i in range(len(A)):
        j = binarySearch_python(B, A[i])
        while B[j] == B[j - 1]:
            if j < 1:
                break
            j -= 1
        inversion_count += j
        B.pop(j)
    return inversion_count

def binarySearch_python(alist, item):
    first = 0
    last = len(alist) - 1
    found = False
    while first <= last and not found:
        midpoint = (first + last) // 2
        if alist[midpoint] == item:
            return midpoint
        else:
            if item < alist[midpoint]:
                last = midpoint - 1
            else:
                first = midpoint + 1

# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
# Merge sort version by Zhe Hu
def inv_cnt_ZheHu(a):
    _, count = inv_cnt(a.copy())
    return count

def inv_cnt(a):
    n = len(a)
    if n==1:
        return a, 0
    left = a[0:n//2] # should be smaller
    left, cnt1 = inv_cnt(left)
    right = a[n//2:] # should be larger
    right, cnt2 = inv_cnt(right)

    cnt = 0
    i_left = i_right = i_a = 0
    while i_a < n:
        if (i_right>=len(right)) or (i_left < len(left)
            and left[i_left] <= right[i_right]):
            a[i_a] = left[i_left]
            i_left += 1
        else:
            a[i_a] = right[i_right]
            i_right += 1
            if i_left < len(left):
                cnt += len(left) - i_left
        i_a += 1
    return (a, cnt1 + cnt2 + cnt)

# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
# Merge sort version by noman pouigt
# From https://stackoverflow.com/q/47830098
def reversePairs_nomanpouigt(nums):
    def merge(left, right):
        if not left or not right:
            return (0, left + right)
        #if everything in left is less than right
        if left[len(left)-1] < right[0]:
            return (0, left + right)
        else:
            left_idx, right_idx, count = 0, 0, 0
            merged_output = []

            # check for condition before we merge it
            while left_idx < len(left) and right_idx < len(right):
                #if left[left_idx] > 2 * right[right_idx]:
                if left[left_idx] > right[right_idx]:
                    count += len(left) - left_idx
                    right_idx += 1
                else:
                    left_idx += 1

            #merging the sorted list
            left_idx, right_idx = 0, 0
            while left_idx < len(left) and right_idx < len(right):
                if left[left_idx] > right[right_idx]:
                    merged_output += [right[right_idx]]
                    right_idx += 1
                else:
                    merged_output += [left[left_idx]]
                    left_idx += 1
            if left_idx == len(left):
                merged_output += right[right_idx:]
            else:
                merged_output += left[left_idx:]
        return (count, merged_output)

    def partition(nums):
        count = 0
        if len(nums) == 1 or not nums:
            return (0, nums)
        pivot = len(nums)//2
        left_count, l = partition(nums[:pivot])
        right_count, r = partition(nums[pivot:])
        temp_count, temp_list = merge(l, r)
        return (temp_count + left_count + right_count, temp_list)
    return partition(nums)[0]

# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
# PM 2Ring
def merge_PM2R(seq):
    seq, count = merge_sort_count_PM2R(seq)
    return count

def merge_sort_count_PM2R(seq):
    mid = len(seq) // 2
    if mid == 0:
        return seq, 0
    left, left_total = merge_sort_count_PM2R(seq[:mid])
    right, right_total = merge_sort_count_PM2R(seq[mid:])
    total = left_total + right_total
    result = []
    i = j = 0
    left_len, right_len = len(left), len(right)
    while i < left_len and j < right_len:
        if left[i] <= right[j]:
            result.append(left[i])
            i += 1
        else:
            result.append(right[j])
            j += 1
            total += left_len - i
    result.extend(left[i:])
    result.extend(right[j:])
    return result, total

def rank_sum_PM2R(a):
    total = 0
    counts = [0] * len(a)
    rank = {v: i for i, v in enumerate(sorted(a))}
    for u in reversed(a):
        i = rank[u]
        total += sum(counts[:i])
        counts[i] += 1
    return total

# Fenwick tree functions adapted from C code on Wikipedia
def fen_sum(tree, i):
    ''' Return the sum of the first i elements, 0 through i-1 '''
    total = 0
    while i:
        total += tree[i-1]
        i -= i & -i
    return total

def fen_add(tree, delta, i):
    ''' Add delta to element i and thus 
        to fen_sum(tree, j) for all j > i 
    '''
    size = len(tree)
    while i < size:
        tree[i] += delta
        i += (i+1) & -(i+1)

def fenwick_PM2R(a):
    total = 0
    counts = [0] * len(a)
    rank = {v: i for i, v in enumerate(sorted(a))}
    for u in reversed(a):
        i = rank[u]
        total += fen_sum(counts, i)
        fen_add(counts, 1, i)
    return total

def fenwick_inline_PM2R(a):
    total = 0
    size = len(a)
    counts = [0] * size
    rank = {v: i for i, v in enumerate(sorted(a))}
    for u in reversed(a):
        i = rank[u]
        j = i + 1
        while i:
            total += counts[i]
            i -= i & -i
        while j < size:
            counts[j] += 1
            j += j & -j
    return total

def bruteforce_loops_PM2R(a):
    total = 0
    for i in range(1, len(a)):
        u = a[i]
        for j in range(i):
            if a[j] > u:
                total += 1
    return total

def bruteforce_sum_PM2R(a):
    return sum(1 for i in range(1, len(a)) for j in range(i) if a[j] > a[i])

# Using binary tree counting, derived from C++ code (?) by prasadvk
# https://stackoverflow.com/a/16056139
def ltree_count_PM2R(a):
    total, root = 0, None
    for u in a:
        # Store data in a list-based tree structure
        # [data, count, left_child, right_child]
        p = [u, 0, None, None]
        if root is None:
            root = p
            continue
        q = root
        while True:
            if p[0] < q[0]:
                total += 1 + q[1]
                child = 2
            else:
                q[1] += 1
                child = 3
            if q[child]:
                q = q[child]
            else:
                q[child] = p
                break
    return total

# Counting based on radix sort, recursive version
def radix_partition_rec(a, L):
    if len(a) < 2:
        return 0
    if len(a) == 2:
        return a[1] < a[0]
    left, right = [], []
    count = 0
    for u in a:
        if u & L:
            right.append(u)
        else:
            count += len(right)
            left.append(u)
    L >>= 1
    if L:
        count += radix_partition_rec(left, L) + radix_partition_rec(right, L)
    return count

# The following functions determine swaps using a permutation of 
# range(len(a)) that has the same inversion count as `a`. We can create
# this permutation with `sorted(range(len(a)), key=lambda k: a[k])`
# but `sorted(range(len(a)), key=a.__getitem__)` is a little faster.

# Counting based on radix sort, iterative version
def radix_partition_iter(seq, L):
    count = 0
    parts = [seq]
    while L and parts:
        newparts = []
        for a in parts:
            if len(a) < 2:
                continue
            if len(a) == 2:
                count += a[1] < a[0]
                continue
            left, right = [], []
            for u in a:
                if u & L:
                    right.append(u)
                else:
                    count += len(right)
                    left.append(u)
            if left:
                newparts.append(left)
            if right:
                newparts.append(right)
        parts = newparts
        L >>= 1
    return count

def perm_radixR_PM2R(a):
    size = len(a)
    b = sorted(range(size), key=a.__getitem__)
    n = size.bit_length() - 1
    return radix_partition_rec(b, 1 << n)

def perm_radixI_PM2R(a):
    size = len(a)
    b = sorted(range(size), key=a.__getitem__)
    n = size.bit_length() - 1
    return radix_partition_iter(b, 1 << n)

# Plain sum of the counts of the permutation
def perm_sum_PM2R(a):
    total = 0
    size = len(a)
    counts = [0] * size
    for i in reversed(sorted(range(size), key=a.__getitem__)):
        total += sum(counts[:i])
        counts[i] = 1
    return total

# Fenwick sum of the counts of the permutation
def perm_fenwick_PM2R(a):
    total = 0
    size = len(a)
    counts = [0] * size
    for i in reversed(sorted(range(size), key=a.__getitem__)):
        j = i + 1
        while i:
            total += counts[i]
            i -= i & -i
        while j < size:
            counts[j] += 1
            j += j & -j
    return total

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# All the inversion-counting functions
funcs = (
    solution_TimBabych,
    solutionE_TimBabych,
    solution_python,
    count_inversion_mkso,
    count_inversions_NiklasB,
    merge_count_BM,
    inv_cnt_ZheHu,
    reversePairs_nomanpouigt,
    fenwick_PM2R,
    fenwick_inline_PM2R,
    merge_PM2R,
    rank_sum_PM2R,
    bruteforce_loops_PM2R,
    bruteforce_sum_PM2R,
    ltree_count_PM2R,
    perm_radixR_PM2R,
    perm_radixI_PM2R,
    perm_sum_PM2R,
    perm_fenwick_PM2R,
)

def time_test(seq, loops, verify=False):
    orig = seq
    timings = []
    for func in funcs:
        seq = orig.copy()
        value = func(seq) if verify else None
        t = Timer(lambda: func(seq))
        result = sorted(t.repeat(3, loops))
        timings.append((result, func.__name__, value))
        assert seq==orig, 'Sequence altered by {}!'.format(func.__name__)
    first = timings[0][-1]
    timings.sort()
    for result, name, value in timings:
        result = ', '.join([format(u, '.5f') for u in result])
        print('{:24} : {}'.format(name, result))

    if verify:
        # Check that all results are identical
        bad = ['%s: %d' % (name, value)
            for _, name, value in timings if value != first]
        if bad:
            print('ERROR. Value: {}, bad: {}'.format(first, ', '.join(bad)))
        else:
            print('Value: {}'.format(first))
    print()

#Run the tests
size, loops = 5, 1 << 12
verify = True
for _ in range(7):
    hi = size // 2
    print('Size = {}, hi = {}, {} loops'.format(size, hi, loops))
    seq = [randrange(hi) for _ in range(size)]
    time_test(seq, loops, verify)
    loops >>= 1
    size <<= 1

#size, loops = 640, 8
#verify = False
#for _ in range(5):
    #hi = size // 2
    #print('Size = {}, hi = {}, {} loops'.format(size, hi, loops))
    #seq = [randrange(hi) for _ in range(size)]
    #time_test(seq, loops, verify)
    #size <<= 1

#size, loops = 163840, 4
#verify = False
#for _ in range(3):
    #hi = size // 2
    #print('Size = {}, hi = {}, {} loops'.format(size, hi, loops))
    #seq = [randrange(hi) for _ in range(size)]
    #time_test(seq, loops, verify)
    #size <<= 1

Por favor, veja aqui o resultado


Obrigado, foi muito divertido :) Mostra claramente os benefícios do uso do módulo C - que é dividido ao meio.
Tim Babych

O problema é que o vencedor usa (teoricamente) algoritmo quadrático. para tamanho ~ 100.000, será derrotado por outros. Eu editei meu post para colocar uma solução python quase linear de velocidade C.
BM

@BM Claro, mas a abordagem bissect de Tim é muito boa até chegar a um tamanho de 45.000 ou mais. Tenho mais algumas soluções que adicionarei aqui no dia seguinte ou depois.
PM 2Ring de

@TimBabych Você está dizendo que bisecté C? Tenho certeza que é Python.
Stefan Pochmann


10

O número de inversões pode ser encontrado analisando o processo de mesclagem na classificação de mesclagem: processo de fusão

Ao copiar um elemento da segunda matriz para a matriz de mesclagem (o 9 neste exemplo), ele mantém seu lugar em relação aos outros elementos. Ao copiar um elemento da primeira matriz para a matriz de mesclagem (o 5 aqui), ele é invertido com todos os elementos permanecendo na segunda matriz (2 inversões com o 3 e o 4). Portanto, uma pequena modificação no merge sort pode resolver o problema em O (n ln n).
Por exemplo, apenas descomente as duas # linhas no código mergesort Python abaixo para ter a contagem.

def merge(l1,l2):
    l = []
    # global count
    while l1 and l2:
        if l1[-1] <= l2[-1]:
            l.append(l2.pop())
        else:
            l.append(l1.pop())
            # count += len(l2)
    l.reverse()
    return l1 + l2 + l

def sort(l): 
    t = len(l) // 2
    return merge(sort(l[:t]), sort(l[t:])) if t > 0 else l

count=0
print(sort([5,1,2,4,9,3]), count)
# [1, 2, 3, 4, 5, 9] 6

EDIT 1

A mesma tarefa pode ser realizada com uma versão estável de classificação rápida, conhecida por ser um pouco mais rápida:

def part(l):
    pivot=l[-1]
    small,big = [],[]
    count = big_count = 0
    for x in l:
        if x <= pivot:
            small.append(x)
            count += big_count
        else:
            big.append(x)
            big_count += 1
    return count,small,big

def quick_count(l):
    if len(l)<2 : return 0
    count,small,big = part(l)
    small.pop()
    return count + quick_count(small) + quick_count(big)

Escolhendo o pivô como o último elemento, as inversões são bem contadas e o tempo de execução 40% melhor do que a fusão acima.

EDITAR 2

Para desempenho em python, uma versão numpy e numba:

Primeiro, a parte numpy, que usa argsort O (n ln n):

def count_inversions(a):
    n = a.size
    counts = np.arange(n) & -np.arange(n)  # The BIT
    ags = a.argsort(kind='mergesort')    
    return  BIT(ags,counts,n)

E a parte numba para a abordagem BIT eficiente :

@numba.njit
def BIT(ags,counts,n):
    res = 0        
    for x in ags :
        i = x
        while i:
            res += counts[i]
            i -= i & -i
        i = x+1
        while i < n:
            counts[i] -= 1
            i += i & -i
    return  res  

Publiquei uma resposta que timeitcompara todas as respostas do Python a essa pergunta, portanto, inclui seu código. Você pode estar interessado em ver os resultados do tempo.
PM 2Ring

Sem problemas de desempenho neste post ... Vou tentar em algum momento. Numpy numba permitido;)?
BM

Eu nunca usei o Numba, mas usei o Numpy um pouco, e pensei em adicionar uma versão do Numpy, mas decidi restringir os testes a soluções que usam apenas a biblioteca padrão. Mas acho que seria interessante ver como uma solução Numpy se compara. Suspeito que não será mais rápido em listas pequenas.
PM 2Ring

Uma velocidade de 100x é impressionante! Mas não posso executá-lo, pois não tenho Numba. E como eu disse antes, não seria justo incluí-lo em minha timeitcoleção.
PM 2Ring de

8

Observe que a resposta de Geoffrey Irving está errada.

O número de inversões em uma matriz é a metade da distância total que os elementos devem ser movidos para classificar a matriz. Portanto, ele pode ser calculado classificando a matriz, mantendo a permutação resultante p [i] e, em seguida, calculando a soma de abs (p [i] -i) / 2. Isso leva tempo O (n log n), o que é ideal.

Um método alternativo é fornecido em http://mathworld.wolfram.com/PermutationInversion.html . Este método é equivalente à soma de max (0, p [i] -i), que é igual à soma de abs (p [i] -i]) / 2, uma vez que a distância total dos elementos movidos para a esquerda é igual ao os elementos de distância total se movem para a direita.

Tome a sequência {3, 2, 1} como exemplo. Existem três inversões: (3, 2), (3, 1), (2, 1), então o número da inversão é 3. No entanto, de acordo com o método citado, a resposta teria sido 2.


Em vez disso, a resposta correta pode ser encontrada contando o número mínimo exigido de trocas adjacentes. Veja a discussão: stackoverflow.com/questions/20990127/…
Isaac Turner


4

Aqui está uma solução possível com variação da árvore binária. Ele adiciona um campo denominado rightSubTreeSize a cada nó da árvore. Continue inserindo números na árvore binária na ordem em que aparecem no array. Se o número for lhs de nó, a contagem de inversão para esse elemento seria (1 + rightSubTreeSize). Uma vez que todos esses elementos são maiores do que o elemento atual, eles teriam aparecido anteriormente na matriz. Se o elemento for para o rhs de um nó, apenas aumente seu rightSubTreeSize. A seguir está o código.

Node { 
    int data;
    Node* left, *right;
    int rightSubTreeSize;

    Node(int data) { 
        rightSubTreeSize = 0;
    }   
};

Node* root = null;
int totCnt = 0;
for(i = 0; i < n; ++i) { 
    Node* p = new Node(a[i]);
    if(root == null) { 
        root = p;
        continue;
    } 

    Node* q = root;
    int curCnt = 0;
    while(q) { 
        if(p->data <= q->data) { 
            curCnt += 1 + q->rightSubTreeSize;
            if(q->left) { 
                q = q->left;
            } else { 
                q->left = p;
                break;
            }
        } else { 
            q->rightSubTreeSize++;
            if(q->right) { 
                q = q->right;
            } else { 
                q->right = p;
                break;
            }
        }
    }

    totCnt += curCnt;
  }
  return totCnt;

Esta é uma abordagem interessante e parece ser bastante rápida. No entanto, essa comparação precisa ser de if(p->data < q->data)outra forma, as duplicatas não são tratadas corretamente. E não há necessidade de testar qno topo do loop, um whileloop incondicional funciona bem. Além disso, você se esqueceu de mencionar que idioma é esse. :) E sua função parece ter perdido a linha de cabeçalho.
PM 2Ring

Acabei de adicionar uma versão Python baseada em seu algoritmo de árvore à minha resposta. É claro que não é tão rápido quanto uma versão totalmente compilada, mas funciona muito bem em relação às outras versões do Python.
PM 2Ring

3
public static int mergeSort(int[] a, int p, int r)
{
    int countInversion = 0;
    if(p < r)
    {
        int q = (p + r)/2;
        countInversion = mergeSort(a, p, q);
        countInversion += mergeSort(a, q+1, r);
        countInversion += merge(a, p, q, r);
    }
    return countInversion;
}

public static int merge(int[] a, int p, int q, int r)
{
    //p=0, q=1, r=3
    int countingInversion = 0;
    int n1 = q-p+1;
    int n2 = r-q;
    int[] temp1 = new int[n1+1];
    int[] temp2 = new int[n2+1];
    for(int i=0; i<n1; i++) temp1[i] = a[p+i];
    for(int i=0; i<n2; i++) temp2[i] = a[q+1+i];

    temp1[n1] = Integer.MAX_VALUE;
    temp2[n2] = Integer.MAX_VALUE;
    int i = 0, j = 0;

    for(int k=p; k<=r; k++)
    {
        if(temp1[i] <= temp2[j])
        {
            a[k] = temp1[i];
            i++;
        }
        else
        {
            a[k] = temp2[j];
            j++;
            countingInversion=countingInversion+(n1-i); 
        }
    }
    return countingInversion;
}
public static void main(String[] args)
{
    int[] a = {1, 20, 6, 4, 5};
    int countInversion = mergeSort(a, 0, a.length-1);
    System.out.println(countInversion);
}

3
Isso é muito diferente das soluções Java e Python já publicadas? Além disso, as respostas apenas de código não são IMO particularmente boas, especialmente considerando que essa pergunta nem mesmo especificava um idioma.
Bernhard Barker

2

Como essa é uma pergunta antiga, darei minha resposta em C.

#include <stdio.h>

int count = 0;
int inversions(int a[], int len);
void mergesort(int a[], int left, int right);
void merge(int a[], int left, int mid, int right);

int main() {
  int a[] = { 1, 5, 2, 4, 0 };
  printf("%d\n", inversions(a, 5));
}

int inversions(int a[], int len) {
  mergesort(a, 0, len - 1);
  return count;
}

void mergesort(int a[], int left, int right) {
  if (left < right) {
     int mid = (left + right) / 2;
     mergesort(a, left, mid);
     mergesort(a, mid + 1, right);
     merge(a, left, mid, right);
  }
}

void merge(int a[], int left, int mid, int right) {
  int i = left;
  int j = mid + 1;
  int k = 0;
  int b[right - left + 1];
  while (i <= mid && j <= right) {
     if (a[i] <= a[j]) {
       b[k++] = a[i++];
     } else {
       printf("right element: %d\n", a[j]);
       count += (mid - i + 1);
       printf("new count: %d\n", count);
       b[k++] = a[j++];
     }
  }
  while (i <= mid)
    b[k++] = a[i++];
  while (j <= right)
    b[k++] = a[j++];
  for (i = left, k = 0; i <= right; i++, k++) {
    a[i] = b[k];
  }
}

-1 porque uma resposta em qualquer outro idioma levaria a um número excessivo de respostas, todas essencialmente duplicando informações já apresentadas em outras respostas. Além disso, esta é essencialmente uma resposta apenas de código sem explicação, o que é, na melhor das hipóteses, principalmente apropriado para questões realmente sobre aquela linguagem.
Bernhard Barker

2

Aqui está a solução c ++

/**
*array sorting needed to verify if first arrays n'th element is greater than sencond arrays
*some element then all elements following n will do the same
*/
#include<stdio.h>
#include<iostream>
using namespace std;
int countInversions(int array[],int size);
int merge(int arr1[],int size1,int arr2[],int size2,int[]);
int main()
{
    int array[] = {2, 4, 1, 3, 5};
    int size = sizeof(array) / sizeof(array[0]);
    int x = countInversions(array,size);
    printf("number of inversions = %d",x);
}

int countInversions(int array[],int size)
{
    if(size > 1 )
    {
    int mid = size / 2;
    int count1 = countInversions(array,mid);
    int count2 = countInversions(array+mid,size-mid);
    int temp[size];
    int count3 = merge(array,mid,array+mid,size-mid,temp);
    for(int x =0;x<size ;x++)
    {
        array[x] = temp[x];
    }
    return count1 + count2 + count3;
    }else{
        return 0;
    }
}

int merge(int arr1[],int size1,int arr2[],int size2,int temp[])
{
    int count  = 0;
    int a = 0;
    int b = 0;
    int c = 0;
    while(a < size1 && b < size2)
    {
        if(arr1[a] < arr2[b])
        {
            temp[c] = arr1[a];
            c++;
            a++;
        }else{
            temp[c] = arr2[b];
            b++;
            c++;
            count = count + size1 -a;
        }
    }

    while(a < size1)
    {
        temp[c] = arr1[a];
        c++;a++;
    }

while(b < size2)
    {
        temp[c] = arr2[b];
        c++;b++;
    }

    return count;
}

1

Aqui está um código C para inversões de contagem

#include <stdio.h>
#include <stdlib.h>

int  _mergeSort(int arr[], int temp[], int left, int right);
int merge(int arr[], int temp[], int left, int mid, int right);

/* This function sorts the input array and returns the
   number of inversions in the array */
int mergeSort(int arr[], int array_size)
{
    int *temp = (int *)malloc(sizeof(int)*array_size);
    return _mergeSort(arr, temp, 0, array_size - 1);
}

/* An auxiliary recursive function that sorts the input array and
  returns the number of inversions in the array. */
int _mergeSort(int arr[], int temp[], int left, int right)
{
  int mid, inv_count = 0;
  if (right > left)
  {
    /* Divide the array into two parts and call _mergeSortAndCountInv()
       for each of the parts */
    mid = (right + left)/2;

    /* Inversion count will be sum of inversions in left-part, right-part
      and number of inversions in merging */
    inv_count  = _mergeSort(arr, temp, left, mid);
    inv_count += _mergeSort(arr, temp, mid+1, right);

    /*Merge the two parts*/
    inv_count += merge(arr, temp, left, mid+1, right);
  }
  return inv_count;
}

/* This funt merges two sorted arrays and returns inversion count in
   the arrays.*/
int merge(int arr[], int temp[], int left, int mid, int right)
{
  int i, j, k;
  int inv_count = 0;

  i = left; /* i is index for left subarray*/
  j = mid;  /* i is index for right subarray*/
  k = left; /* i is index for resultant merged subarray*/
  while ((i <= mid - 1) && (j <= right))
  {
    if (arr[i] <= arr[j])
    {
      temp[k++] = arr[i++];
    }
    else
    {
      temp[k++] = arr[j++];

     /*this is tricky -- see above explanation/diagram for merge()*/
      inv_count = inv_count + (mid - i);
    }
  }

  /* Copy the remaining elements of left subarray
   (if there are any) to temp*/
  while (i <= mid - 1)
    temp[k++] = arr[i++];

  /* Copy the remaining elements of right subarray
   (if there are any) to temp*/
  while (j <= right)
    temp[k++] = arr[j++];

  /*Copy back the merged elements to original array*/
  for (i=left; i <= right; i++)
    arr[i] = temp[i];

  return inv_count;
}

/* Driver progra to test above functions */
int main(int argv, char** args)
{
  int arr[] = {1, 20, 6, 4, 5};
  printf(" Number of inversions are %d \n", mergeSort(arr, 5));
  getchar();
  return 0;
}

Uma explicação foi dada em detalhes aqui: http://www.geeksforgeeks.org/counting-inversions/


1

O (n log n) tempo, solução O (n) espaço em java.

Um mergesort, com um ajuste para preservar o número de inversões realizadas durante a etapa de fusão. (para um mergesort bem explicado, dê uma olhada em http://www.vogella.com/tutorials/JavaAlgorithmsMergesort/article.html )

Uma vez que mergesort pode ser feito no local, a complexidade do espaço pode ser melhorada para O (1).

Ao usar essa classificação, as inversões acontecem apenas na etapa de mesclagem e apenas quando temos que colocar um elemento da segunda parte antes dos elementos da primeira metade, por exemplo

  • 0 5 10 15

fundido com

  • 1 6 22

temos 3 + 2 + 0 = 5 inversões:

  • 1 com {5, 10, 15}
  • 6 com {10, 15}
  • 22 com {}

Depois de fazermos as 5 inversões, nossa nova lista mesclada é 0, 1, 5, 6, 10, 15, 22

Há uma tarefa de demonstração no Codility chamada ArrayInversionCount, onde você pode testar sua solução.

    public class FindInversions {

    public static int solution(int[] input) {
        if (input == null)
            return 0;
        int[] helper = new int[input.length];
        return mergeSort(0, input.length - 1, input, helper);
    }

    public static int mergeSort(int low, int high, int[] input, int[] helper) {
        int inversionCount = 0;
        if (low < high) {
            int medium = low + (high - low) / 2;
            inversionCount += mergeSort(low, medium, input, helper);
            inversionCount += mergeSort(medium + 1, high, input, helper);
            inversionCount += merge(low, medium, high, input, helper);
        }
        return inversionCount;
    }

    public static int merge(int low, int medium, int high, int[] input, int[] helper) {
        int inversionCount = 0;

        for (int i = low; i <= high; i++)
            helper[i] = input[i];

        int i = low;
        int j = medium + 1;
        int k = low;

        while (i <= medium && j <= high) {
            if (helper[i] <= helper[j]) {
                input[k] = helper[i];
                i++;
            } else {
                input[k] = helper[j];
                // the number of elements in the first half which the j element needs to jump over.
                // there is an inversion between each of those elements and j.
                inversionCount += (medium + 1 - i);
                j++;
            }
            k++;
        }

        // finish writing back in the input the elements from the first part
        while (i <= medium) {
            input[k] = helper[i];
            i++;
            k++;
        }
        return inversionCount;
    }

}

1

Aqui está a implementação de O (n * log (n)) perl:

sub sort_and_count {
    my ($arr, $n) = @_;
    return ($arr, 0) unless $n > 1;

    my $mid = $n % 2 == 1 ? ($n-1)/2 : $n/2;
    my @left = @$arr[0..$mid-1];
    my @right = @$arr[$mid..$n-1];

    my ($sleft, $x) = sort_and_count( \@left, $mid );
    my ($sright, $y) = sort_and_count( \@right, $n-$mid);
    my ($merged, $z) = merge_and_countsplitinv( $sleft, $sright, $n );

    return ($merged, $x+$y+$z);
}

sub merge_and_countsplitinv {
    my ($left, $right, $n) = @_;

    my ($l_c, $r_c) = ($#$left+1, $#$right+1);
    my ($i, $j) = (0, 0);
    my @merged;
    my $inv = 0;

    for my $k (0..$n-1) {
        if ($i<$l_c && $j<$r_c) {
            if ( $left->[$i] < $right->[$j]) {
                push @merged, $left->[$i];
                $i+=1;
            } else {
                push @merged, $right->[$j];
                $j+=1;
                $inv += $l_c - $i;
            }
        } else {
            if ($i>=$l_c) {
                push @merged, @$right[ $j..$#$right ];
            } else {
                push @merged, @$left[ $i..$#$left ];
            }
            last;
        }
    }

    return (\@merged, $inv);
}

1

Minha resposta em Python:

1- Classifique o Array primeiro e faça uma cópia dele. Em meu programa, B representa a matriz classificada. 2- Itere sobre o array original (não classificado) e encontre o índice desse elemento na lista classificada. Anote também o índice do elemento. 3- Certifique-se de que o elemento não tem duplicatas, se tiver, então você precisa alterar o valor do seu índice por -1. A condição while em meu programa está fazendo exatamente isso. 4- Continue contando a inversão que será o seu valor de índice e remova o elemento depois de calcular sua inversão.

def binarySearch(alist, item):
    first = 0
    last = len(alist) - 1
    found = False

    while first <= last and not found:
        midpoint = (first + last)//2
        if alist[midpoint] == item:
            return midpoint
        else:
            if item < alist[midpoint]:
                last = midpoint - 1
            else:
                first = midpoint + 1

def solution(A):

    B = list(A)
    B.sort()
    inversion_count = 0
    for i in range(len(A)):
        j = binarySearch(B, A[i])
        while B[j] == B[j - 1]:
            if j < 1:
                break
            j -= 1

        inversion_count += j
        B.pop(j)

    if inversion_count > 1000000000:
        return -1
    else:
        return inversion_count

print solution([4, 10, 11, 1, 3, 9, 10])

Publiquei uma resposta que timeitcompara todas as respostas do Python a essa pergunta, portanto, inclui seu código. Você pode estar interessado em ver os resultados do tempo.
PM 2Ring

1

Bem, eu tenho uma solução diferente, mas temo que funcione apenas para elementos de matriz distintos.

//Code
#include <bits/stdc++.h>
using namespace std;

int main()
{
    int i,n;
    cin >> n;
    int arr[n],inv[n];
    for(i=0;i<n;i++){
        cin >> arr[i];
    }
    vector<int> v;
    v.push_back(arr[n-1]);
    inv[n-1]=0;
    for(i=n-2;i>=0;i--){
        auto it = lower_bound(v.begin(),v.end(),arr[i]); 
        //calculating least element in vector v which is greater than arr[i]
        inv[i]=it-v.begin();
        //calculating distance from starting of vector
        v.insert(it,arr[i]);
        //inserting that element into vector v
    }
    for(i=0;i<n;i++){
        cout << inv[i] << " ";
    }
    cout << endl;
    return 0;
}

Para explicar meu código, continuamos adicionando elementos do final de Array. Para qualquer elemento de matriz de entrada, encontramos o índice do primeiro elemento no vetor v, que é maior do que nosso elemento de entrada, e atribuímos esse valor à contagem de inversão do índice do elemento de entrada .Depois disso, inserimos aquele elemento no vetor v em sua posição correta de forma que o vetor v permaneça em ordem de classificação.

//INPUT     
4
2 1 4 3

//OUTPUT    
1 0 1 0

//To calculate total inversion count just add up all the elements in output array

1

Outra solução Python, curta. Faz uso do módulo bisect integrado, que fornece funções para inserir o elemento em seu lugar na matriz classificada e para encontrar o índice do elemento na matriz classificada.

A ideia é armazenar os elementos à esquerda do n-ésimo nessa matriz, o que nos permitiria encontrar facilmente o número deles maior que n-ésimo.

import bisect
def solution(A):
    sorted_left = []
    res = 0
    for i in xrange(1, len(A)):
        bisect.insort_left(sorted_left, A[i-1])
        # i is also the length of sorted_left
        res += (i - bisect.bisect(sorted_left, A[i]))
    return res

1
Publiquei uma resposta que timeitcompara todas as respostas do Python a essa pergunta, portanto, inclui seu código. Você pode estar interessado em ver os resultados do tempo. : D
PM 2Ring

1

Esta resposta contém os resultados dos timeittestes produzidos pelo código em minha resposta principal . Por favor, veja essa resposta para detalhes!

count_inversions speed test results

Size = 5, hi = 2, 4096 loops
ltree_count_PM2R         : 0.04871, 0.04872, 0.04876
bruteforce_loops_PM2R    : 0.05696, 0.05700, 0.05776
solution_TimBabych       : 0.05760, 0.05822, 0.05943
solutionE_TimBabych      : 0.06642, 0.06704, 0.06760
bruteforce_sum_PM2R      : 0.07523, 0.07545, 0.07563
perm_sum_PM2R            : 0.09873, 0.09875, 0.09935
rank_sum_PM2R            : 0.10449, 0.10463, 0.10468
solution_python          : 0.13034, 0.13061, 0.13221
fenwick_inline_PM2R      : 0.14323, 0.14610, 0.18802
perm_radixR_PM2R         : 0.15146, 0.15203, 0.15235
merge_count_BM           : 0.16179, 0.16267, 0.16467
perm_radixI_PM2R         : 0.16200, 0.16202, 0.16768
perm_fenwick_PM2R        : 0.16887, 0.16920, 0.17075
merge_PM2R               : 0.18262, 0.18271, 0.18418
count_inversions_NiklasB : 0.19183, 0.19279, 0.20388
count_inversion_mkso     : 0.20060, 0.20141, 0.20398
inv_cnt_ZheHu            : 0.20815, 0.20841, 0.20906
fenwick_PM2R             : 0.22109, 0.22137, 0.22379
reversePairs_nomanpouigt : 0.29620, 0.29689, 0.30293
Value: 5

Size = 10, hi = 5, 2048 loops
solution_TimBabych       : 0.05954, 0.05989, 0.05991
solutionE_TimBabych      : 0.05970, 0.05972, 0.05998
perm_sum_PM2R            : 0.07517, 0.07519, 0.07520
ltree_count_PM2R         : 0.07672, 0.07677, 0.07684
bruteforce_loops_PM2R    : 0.07719, 0.07724, 0.07817
rank_sum_PM2R            : 0.08587, 0.08823, 0.08864
bruteforce_sum_PM2R      : 0.09470, 0.09472, 0.09484
solution_python          : 0.13126, 0.13154, 0.13185
perm_radixR_PM2R         : 0.14239, 0.14320, 0.14474
perm_radixI_PM2R         : 0.14632, 0.14669, 0.14679
fenwick_inline_PM2R      : 0.16796, 0.16831, 0.17030
perm_fenwick_PM2R        : 0.18189, 0.18212, 0.18638
merge_count_BM           : 0.19816, 0.19870, 0.19948
count_inversions_NiklasB : 0.21807, 0.22031, 0.22215
merge_PM2R               : 0.22037, 0.22048, 0.26106
fenwick_PM2R             : 0.24290, 0.24314, 0.24744
count_inversion_mkso     : 0.24895, 0.24899, 0.25205
inv_cnt_ZheHu            : 0.26253, 0.26259, 0.26590
reversePairs_nomanpouigt : 0.35711, 0.35762, 0.35973
Value: 20

Size = 20, hi = 10, 1024 loops
solutionE_TimBabych      : 0.05687, 0.05696, 0.05720
solution_TimBabych       : 0.06126, 0.06151, 0.06168
perm_sum_PM2R            : 0.06875, 0.06906, 0.07054
rank_sum_PM2R            : 0.07988, 0.07995, 0.08002
ltree_count_PM2R         : 0.11232, 0.11239, 0.11257
bruteforce_loops_PM2R    : 0.12553, 0.12584, 0.12592
solution_python          : 0.13472, 0.13540, 0.13694
bruteforce_sum_PM2R      : 0.15820, 0.15849, 0.16021
perm_radixI_PM2R         : 0.17101, 0.17148, 0.17229
perm_radixR_PM2R         : 0.17891, 0.18087, 0.18366
perm_fenwick_PM2R        : 0.20554, 0.20708, 0.21412
fenwick_inline_PM2R      : 0.21161, 0.21163, 0.22047
merge_count_BM           : 0.24125, 0.24261, 0.24565
count_inversions_NiklasB : 0.25712, 0.25754, 0.25778
merge_PM2R               : 0.26477, 0.26566, 0.31297
fenwick_PM2R             : 0.28178, 0.28216, 0.29069
count_inversion_mkso     : 0.30286, 0.30290, 0.30652
inv_cnt_ZheHu            : 0.32024, 0.32041, 0.32447
reversePairs_nomanpouigt : 0.45812, 0.45822, 0.46172
Value: 98

Size = 40, hi = 20, 512 loops
solutionE_TimBabych      : 0.05784, 0.05787, 0.05958
solution_TimBabych       : 0.06452, 0.06475, 0.06479
perm_sum_PM2R            : 0.07254, 0.07261, 0.07263
rank_sum_PM2R            : 0.08537, 0.08540, 0.08572
ltree_count_PM2R         : 0.11744, 0.11749, 0.11792
solution_python          : 0.14262, 0.14285, 0.14465
perm_radixI_PM2R         : 0.18774, 0.18776, 0.18922
perm_radixR_PM2R         : 0.19425, 0.19435, 0.19609
bruteforce_loops_PM2R    : 0.21500, 0.21511, 0.21686
perm_fenwick_PM2R        : 0.23338, 0.23375, 0.23674
fenwick_inline_PM2R      : 0.24947, 0.24958, 0.25189
bruteforce_sum_PM2R      : 0.27627, 0.27646, 0.28041
merge_count_BM           : 0.28059, 0.28128, 0.28294
count_inversions_NiklasB : 0.28557, 0.28759, 0.29022
merge_PM2R               : 0.29886, 0.29928, 0.30317
fenwick_PM2R             : 0.30241, 0.30259, 0.35237
count_inversion_mkso     : 0.34252, 0.34356, 0.34441
inv_cnt_ZheHu            : 0.37468, 0.37569, 0.37847
reversePairs_nomanpouigt : 0.50725, 0.50770, 0.50943
Value: 369

Size = 80, hi = 40, 256 loops
solutionE_TimBabych      : 0.06339, 0.06373, 0.06513
solution_TimBabych       : 0.06984, 0.06994, 0.07009
perm_sum_PM2R            : 0.09171, 0.09172, 0.09186
rank_sum_PM2R            : 0.10468, 0.10474, 0.10500
ltree_count_PM2R         : 0.14416, 0.15187, 0.18541
solution_python          : 0.17415, 0.17423, 0.17451
perm_radixI_PM2R         : 0.20676, 0.20681, 0.20936
perm_radixR_PM2R         : 0.21671, 0.21695, 0.21736
perm_fenwick_PM2R        : 0.26197, 0.26252, 0.26264
fenwick_inline_PM2R      : 0.28111, 0.28249, 0.28382
count_inversions_NiklasB : 0.31746, 0.32448, 0.32451
merge_count_BM           : 0.31964, 0.33842, 0.35276
merge_PM2R               : 0.32890, 0.32941, 0.33322
fenwick_PM2R             : 0.34355, 0.34377, 0.34873
count_inversion_mkso     : 0.37689, 0.37698, 0.38079
inv_cnt_ZheHu            : 0.42923, 0.42941, 0.43249
bruteforce_loops_PM2R    : 0.43544, 0.43601, 0.43902
bruteforce_sum_PM2R      : 0.52106, 0.52160, 0.52531
reversePairs_nomanpouigt : 0.57805, 0.58156, 0.58252
Value: 1467

Size = 160, hi = 80, 128 loops
solutionE_TimBabych      : 0.06766, 0.06784, 0.06963
solution_TimBabych       : 0.07433, 0.07489, 0.07516
perm_sum_PM2R            : 0.13143, 0.13175, 0.13179
rank_sum_PM2R            : 0.14428, 0.14440, 0.14922
solution_python          : 0.20072, 0.20076, 0.20084
ltree_count_PM2R         : 0.20314, 0.20583, 0.24776
perm_radixI_PM2R         : 0.23061, 0.23078, 0.23525
perm_radixR_PM2R         : 0.23894, 0.23915, 0.24234
perm_fenwick_PM2R        : 0.30984, 0.31181, 0.31503
fenwick_inline_PM2R      : 0.31933, 0.32680, 0.32722
merge_count_BM           : 0.36003, 0.36387, 0.36409
count_inversions_NiklasB : 0.36796, 0.36814, 0.37106
merge_PM2R               : 0.36847, 0.36848, 0.37127
fenwick_PM2R             : 0.37833, 0.37847, 0.38095
count_inversion_mkso     : 0.42746, 0.42747, 0.43184
inv_cnt_ZheHu            : 0.48969, 0.48974, 0.49293
reversePairs_nomanpouigt : 0.67791, 0.68157, 0.72420
bruteforce_loops_PM2R    : 0.82816, 0.83175, 0.83282
bruteforce_sum_PM2R      : 1.03322, 1.03378, 1.03562
Value: 6194

Size = 320, hi = 160, 64 loops
solutionE_TimBabych      : 0.07467, 0.07470, 0.07483
solution_TimBabych       : 0.08036, 0.08066, 0.08077
perm_sum_PM2R            : 0.21142, 0.21201, 0.25766
solution_python          : 0.22410, 0.22644, 0.22897
rank_sum_PM2R            : 0.22820, 0.22851, 0.22877
ltree_count_PM2R         : 0.24424, 0.24595, 0.24645
perm_radixI_PM2R         : 0.25690, 0.25710, 0.26191
perm_radixR_PM2R         : 0.26501, 0.26504, 0.26729
perm_fenwick_PM2R        : 0.33483, 0.33507, 0.33845
fenwick_inline_PM2R      : 0.34413, 0.34484, 0.35153
merge_count_BM           : 0.39875, 0.39919, 0.40302
fenwick_PM2R             : 0.40434, 0.40439, 0.40845
merge_PM2R               : 0.40814, 0.41531, 0.51417
count_inversions_NiklasB : 0.41681, 0.42009, 0.42128
count_inversion_mkso     : 0.47132, 0.47192, 0.47385
inv_cnt_ZheHu            : 0.54468, 0.54750, 0.54893
reversePairs_nomanpouigt : 0.76164, 0.76389, 0.80357
bruteforce_loops_PM2R    : 1.59125, 1.60430, 1.64131
bruteforce_sum_PM2R      : 2.03734, 2.03834, 2.03975
Value: 24959

Run 2

Size = 640, hi = 320, 8 loops
solutionE_TimBabych      : 0.04135, 0.04374, 0.04575
ltree_count_PM2R         : 0.06738, 0.06758, 0.06874
perm_radixI_PM2R         : 0.06928, 0.06943, 0.07019
fenwick_inline_PM2R      : 0.07850, 0.07856, 0.08059
perm_fenwick_PM2R        : 0.08151, 0.08162, 0.08170
perm_sum_PM2R            : 0.09122, 0.09133, 0.09221
rank_sum_PM2R            : 0.09549, 0.09603, 0.11270
merge_count_BM           : 0.10733, 0.10807, 0.11032
count_inversions_NiklasB : 0.12460, 0.19865, 0.20205
solution_python          : 0.13514, 0.13585, 0.13814

Size = 1280, hi = 640, 8 loops
solutionE_TimBabych      : 0.04714, 0.04742, 0.04752
perm_radixI_PM2R         : 0.15325, 0.15388, 0.15525
solution_python          : 0.15709, 0.15715, 0.16076
fenwick_inline_PM2R      : 0.16048, 0.16160, 0.16403
ltree_count_PM2R         : 0.16213, 0.16238, 0.16428
perm_fenwick_PM2R        : 0.16408, 0.16416, 0.16449
count_inversions_NiklasB : 0.19755, 0.19833, 0.19897
merge_count_BM           : 0.23736, 0.23793, 0.23912
perm_sum_PM2R            : 0.32946, 0.32969, 0.33277
rank_sum_PM2R            : 0.34637, 0.34756, 0.34858

Size = 2560, hi = 1280, 8 loops
solutionE_TimBabych      : 0.10898, 0.11005, 0.11025
perm_radixI_PM2R         : 0.33345, 0.33352, 0.37656
ltree_count_PM2R         : 0.34670, 0.34786, 0.34833
perm_fenwick_PM2R        : 0.34816, 0.34879, 0.35214
fenwick_inline_PM2R      : 0.36196, 0.36455, 0.36741
solution_python          : 0.36498, 0.36637, 0.40887
count_inversions_NiklasB : 0.42274, 0.42745, 0.42995
merge_count_BM           : 0.50799, 0.50898, 0.50917
perm_sum_PM2R            : 1.27773, 1.27897, 1.27951
rank_sum_PM2R            : 1.29728, 1.30389, 1.30448

Size = 5120, hi = 2560, 8 loops
solutionE_TimBabych      : 0.26914, 0.26993, 0.27253
perm_radixI_PM2R         : 0.71416, 0.71634, 0.71753
perm_fenwick_PM2R        : 0.71976, 0.72078, 0.72078
fenwick_inline_PM2R      : 0.72776, 0.72804, 0.73143
ltree_count_PM2R         : 0.81972, 0.82043, 0.82290
solution_python          : 0.83714, 0.83756, 0.83962
count_inversions_NiklasB : 0.87282, 0.87395, 0.92087
merge_count_BM           : 1.09496, 1.09584, 1.10207
rank_sum_PM2R            : 5.02564, 5.06277, 5.06666
perm_sum_PM2R            : 5.09088, 5.12999, 5.13512

Size = 10240, hi = 5120, 8 loops
solutionE_TimBabych      : 0.71556, 0.71718, 0.72201
perm_radixI_PM2R         : 1.54785, 1.55096, 1.55515
perm_fenwick_PM2R        : 1.55103, 1.55353, 1.59298
fenwick_inline_PM2R      : 1.57118, 1.57240, 1.57271
ltree_count_PM2R         : 1.76240, 1.76247, 1.80944
count_inversions_NiklasB : 1.86543, 1.86851, 1.87208
solution_python          : 2.01490, 2.01519, 2.06423
merge_count_BM           : 2.35215, 2.35301, 2.40023
rank_sum_PM2R            : 20.07048, 20.08399, 20.13200
perm_sum_PM2R            : 20.10187, 20.12551, 20.12683

Run 3
Size = 20480, hi = 10240, 4 loops
solutionE_TimBabych      : 1.07636, 1.08243, 1.09569
perm_radixI_PM2R         : 1.59579, 1.60519, 1.61785
perm_fenwick_PM2R        : 1.66885, 1.68549, 1.71109
fenwick_inline_PM2R      : 1.72073, 1.72752, 1.77217
ltree_count_PM2R         : 1.96900, 1.97820, 2.02578
count_inversions_NiklasB : 2.03257, 2.05005, 2.18548
merge_count_BM           : 2.46768, 2.47377, 2.52133
solution_python          : 2.49833, 2.50179, 3.79819

Size = 40960, hi = 20480, 4 loops
solutionE_TimBabych      : 3.51733, 3.52008, 3.56996
perm_radixI_PM2R         : 3.51736, 3.52365, 3.56459
perm_fenwick_PM2R        : 3.76097, 3.80900, 3.87974
fenwick_inline_PM2R      : 3.95099, 3.96300, 3.99748
ltree_count_PM2R         : 4.49866, 4.54652, 5.39716
count_inversions_NiklasB : 4.61851, 4.64303, 4.73026
merge_count_BM           : 5.31945, 5.35378, 5.35951
solution_python          : 6.78756, 6.82911, 6.98217

Size = 81920, hi = 40960, 4 loops
perm_radixI_PM2R         : 7.68723, 7.71986, 7.72135
perm_fenwick_PM2R        : 8.52404, 8.53349, 8.53710
fenwick_inline_PM2R      : 8.97082, 8.97561, 8.98347
ltree_count_PM2R         : 10.01142, 10.01426, 10.03216
count_inversions_NiklasB : 10.60807, 10.62424, 10.70425
merge_count_BM           : 11.42149, 11.42342, 11.47003
solutionE_TimBabych      : 12.83390, 12.83485, 12.89747
solution_python          : 19.66092, 19.67067, 20.72204

Size = 163840, hi = 81920, 4 loops
perm_radixI_PM2R         : 17.14153, 17.16885, 17.22240
perm_fenwick_PM2R        : 19.25944, 19.27844, 20.27568
fenwick_inline_PM2R      : 19.78221, 19.80219, 19.80766
ltree_count_PM2R         : 22.42240, 22.43259, 22.48837
count_inversions_NiklasB : 22.97341, 23.01516, 23.98052
merge_count_BM           : 24.42683, 24.48559, 24.51488
solutionE_TimBabych      : 60.96006, 61.20145, 63.71835
solution_python          : 73.75132, 73.79854, 73.95874

Size = 327680, hi = 163840, 4 loops
perm_radixI_PM2R         : 36.56715, 36.60221, 37.05071
perm_fenwick_PM2R        : 42.21616, 42.21838, 42.26053
fenwick_inline_PM2R      : 43.04987, 43.09075, 43.13287
ltree_count_PM2R         : 49.87400, 50.08509, 50.69292
count_inversions_NiklasB : 50.74591, 50.75012, 50.75551
merge_count_BM           : 52.37284, 52.51491, 53.43003
solutionE_TimBabych      : 373.67198, 377.03341, 377.42360
solution_python          : 411.69178, 411.92691, 412.83856

Size = 655360, hi = 327680, 4 loops
perm_radixI_PM2R         : 78.51927, 78.66327, 79.46325
perm_fenwick_PM2R        : 90.64711, 90.80328, 91.76126
fenwick_inline_PM2R      : 93.32482, 93.39086, 94.28880
count_inversions_NiklasB : 107.74393, 107.80036, 108.71443
ltree_count_PM2R         : 109.11328, 109.23592, 110.18247
merge_count_BM           : 111.05633, 111.07840, 112.05861
solutionE_TimBabych      : 1830.46443, 1836.39960, 1849.53918
solution_python          : 1911.03692, 1912.04484, 1914.69786

0

A resposta fácil O (n ^ 2) é usar loops for aninhados e incrementar um contador para cada inversão

int counter = 0;

for(int i = 0; i < n - 1; i++)
{
    for(int j = i+1; j < n; j++)
    {
        if( A[i] > A[j] )
        {
            counter++;
        }
    }
}

return counter;

Agora, suponho que você queira uma solução mais eficiente, vou pensar sobre isso.


3
Para as questões do dever de casa, é melhor dar sugestões úteis em vez de uma solução real. Ensine um homem a pescar.
Doctor Jones

3
Essa é a solução óbvia que todos os outros alunos obterão primeiro. Suponho que o professor queira uma implementação melhor que lhes traga mais pontos.
mbillard

Não necessariamente, depende do nível do curso de programação. Não é tão simples para um iniciante.
Doctor Jones

eles provavelmente querem a solução n * log (n)
aderesh

0

Uma solução possível em C ++ que satisfaça o requisito de complexidade de tempo O (N * log (N)) seria a seguinte.

#include <algorithm>

vector<int> merge(vector<int>left, vector<int>right, int &counter)
{

    vector<int> result;

    vector<int>::iterator it_l=left.begin();
    vector<int>::iterator it_r=right.begin();

    int index_left=0;

    while(it_l!=left.end() || it_r!=right.end())
    {

        // the following is true if we are finished with the left vector 
        // OR if the value in the right vector is the smaller one.

        if(it_l==left.end() || (it_r!=right.end() && *it_r<*it_l) )
        {
            result.push_back(*it_r);
            it_r++;

            // increase inversion counter
            counter+=left.size()-index_left;
        }
        else
        {
            result.push_back(*it_l);
            it_l++;
            index_left++;

        }
    }

    return result;
}

vector<int> merge_sort_and_count(vector<int> A, int &counter)
{

    int N=A.size();
    if(N==1)return A;

    vector<int> left(A.begin(),A.begin()+N/2);
    vector<int> right(A.begin()+N/2,A.end());

    left=merge_sort_and_count(left,counter);
    right=merge_sort_and_count(right,counter);


    return merge(left, right, counter);

}

Ele difere de uma classificação de mesclagem regular apenas pelo contador.


Isso se parece muito com as soluções Java e Python postadas anteriormente, aparentemente usando o mesmo algoritmo e, portanto, não acho que agregue muito valor além deles.
Bernhard Barker

0

Aqui está minha solução O (n log n) em Ruby:

def solution(t)
    sorted, inversion_count = sort_inversion_count(t)
    return inversion_count
end

def sort_inversion_count(t)
    midpoint = t.length / 2
    left_half = t[0...midpoint]
    right_half = t[midpoint..t.length]

    if midpoint == 0
        return t, 0
    end

    sorted_left_half, left_half_inversion_count = sort_inversion_count(left_half)
    sorted_right_half, right_half_inversion_count = sort_inversion_count(right_half)

    sorted = []
    inversion_count = 0
    while sorted_left_half.length > 0 or sorted_right_half.length > 0
        if sorted_left_half.empty?
            sorted.push sorted_right_half.shift
        elsif sorted_right_half.empty?
            sorted.push sorted_left_half.shift
        else
            if sorted_left_half[0] > sorted_right_half[0]
                inversion_count += sorted_left_half.length
                sorted.push sorted_right_half.shift
            else
                sorted.push sorted_left_half.shift
            end
        end
    end

    return sorted, inversion_count + left_half_inversion_count + right_half_inversion_count
end

E alguns casos de teste:

require "minitest/autorun"

class TestCodility < Minitest::Test
    def test_given_example
        a = [-1, 6, 3, 4, 7, 4]
        assert_equal solution(a), 4
    end

    def test_empty
        a = []
        assert_equal solution(a), 0
    end

    def test_singleton
        a = [0]
        assert_equal solution(a), 0
    end

    def test_none
        a = [1,2,3,4,5,6,7]
        assert_equal solution(a), 0
    end

    def test_all
        a = [5,4,3,2,1]
        assert_equal solution(a), 10
    end

    def test_clones
        a = [4,4,4,4,4,4]
        assert_equal solution(a), 0
    end
end

0

A melhor maneira otimizada será resolvê-lo por meio de merge sort, onde mesclar-se, podemos verificar quantas inversões são necessárias comparando o array esquerdo e direito. Sempre que o elemento na matriz esquerda for maior do que o elemento na matriz direita, haverá inversão.

Abordagem de mesclagem de classificação: -

Aqui está o código. O código é exatamente o mesmo que a classificação por mesclagem, exceto o trecho de código sob o mergeToParentmétodo onde estou contando a inversão sob outra condição de(left[leftunPicked] < right[rightunPicked])

public class TestInversionThruMergeSort {
    
    static int count =0;

    public static void main(String[] args) {
        int[] arr = {6, 9, 1, 14, 8, 12, 3, 2};
        

        partition(arr);

        for (int i = 0; i < arr.length; i++) {

            System.out.println(arr[i]);
        }
        
        System.out.println("inversions are "+count);

    }

    public static void partition(int[] arr) {

        if (arr.length > 1) {

            int mid = (arr.length) / 2;
            int[] left = null;

            if (mid > 0) {
                left = new int[mid];

                for (int i = 0; i < mid; i++) {
                    left[i] = arr[i];
                }
            }

            int[] right = new int[arr.length - left.length];

            if ((arr.length - left.length) > 0) {
                int j = 0;
                for (int i = mid; i < arr.length; i++) {
                    right[j] = arr[i];
                    ++j;
                }
            }

            partition(left);
            partition(right);
            mergeToParent(left, right, arr);
        }

    }

    public static void mergeToParent(int[] left, int[] right, int[] parent) {

        int leftunPicked = 0;
        int rightunPicked = 0;
        int parentIndex = -1;

        while (rightunPicked < right.length && leftunPicked < left.length) {

            if (left[leftunPicked] < right[rightunPicked]) {
                parent[++parentIndex] = left[leftunPicked];
                ++leftunPicked;

            } else {
                count = count + left.length-leftunPicked;
                if ((rightunPicked < right.length)) {
                    parent[++parentIndex] = right[rightunPicked];
                    ++rightunPicked;
                }
            }

        }

        while (leftunPicked < left.length) {
            parent[++parentIndex] = left[leftunPicked];
            ++leftunPicked;
        }

        while (rightunPicked < right.length) {
            parent[++parentIndex] = right[rightunPicked];
            ++rightunPicked;
        }

    }

}

Outra abordagem onde podemos comparar a matriz de entrada com a matriz classificada: - Esta implementação da resposta do Diablo. Embora essa não seja a abordagem preferida, pois a remoção dos n elementos de uma matriz ou lista é log (n ^ 2).

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Iterator;
import java.util.List;


public class TestInversion {

    public static void main(String[] args) {
        
        Integer [] arr1 = {6, 9, 1, 14, 8, 12, 3, 2};
        
        List<Integer> arr = new ArrayList(Arrays.asList(arr1));
        List<Integer> sortArr = new ArrayList<Integer>();
        
        for(int i=0;i<arr.size();i++){
            sortArr.add(arr.get(i));
         
        }
        
            
        Collections.sort(sortArr);
        
        int inversion = 0;
        
        Iterator<Integer> iter = arr.iterator();
        
        while(iter.hasNext()){
            
            Integer el = (Integer)iter.next();
            int index = sortArr.indexOf(el);
            
            if(index+1 > 1){
                inversion = inversion + ((index+1)-1);
            }
            
            //iter.remove();
            sortArr.remove(el);
            
        }
        
        System.out.println("Inversions are "+inversion);
        
        
        

    }


}

0

O número máximo de inversões possíveis para uma lista de tamanho npode ser generalizado por uma expressão:

maxPossibleInversions = (n * (n-1) ) / 2

Portanto, para uma matriz de tamanho 6máximo, as inversões possíveis serão iguais 15.

Para alcançar uma complexidade de n logn , poderíamos adicionar o algoritmo de inversão na classificação por mesclagem.

Aqui estão as etapas generalizadas:

  • Divida o array em dois
  • Chame a rotina mergeSort. Se o elemento na submatriz esquerda for maior do que o elemento na submatriz direita, façainversionCount += leftSubArray.length

É isso aí!

Este é um exemplo simples que fiz usando Javascript:

var arr = [6,5,4,3,2,1]; // Sample input array

var inversionCount = 0;

function mergeSort(arr) {
    if(arr.length == 1)
        return arr;

    if(arr.length > 1) {
        let breakpoint = Math.ceil((arr.length/2));
        // Left list starts with 0, breakpoint-1
        let leftList = arr.slice(0,breakpoint);
        // Right list starts with breakpoint, length-1
        let rightList = arr.slice(breakpoint,arr.length);

        // Make a recursive call
        leftList = mergeSort(leftList);
        rightList = mergeSort(rightList);

        var a = merge(leftList,rightList);
        return a;
    }
}

function merge(leftList,rightList) {
    let result = [];
    while(leftList.length && rightList.length) {
        /**
         * The shift() method removes the first element from an array
         * and returns that element. This method changes the length
         * of the array.
         */
        if(leftList[0] <= rightList[0]) {
            result.push(leftList.shift());
        }else{
            inversionCount += leftList.length;
            result.push(rightList.shift());
        }
    }

    while(leftList.length)
        result.push(leftList.shift());

    while(rightList.length)
        result.push(rightList.shift());

    console.log(result);
    return result;
}

mergeSort(arr);
console.log('Number of inversions: ' + inversionCount);

0

Implementação de inversões de contagem em uma matriz com classificação por mesclagem em Swift:

Observe que o número de trocas é incrementado em

nSwaps += mid + 1 - iL 

(que é o comprimento relativo do lado esquerdo da matriz menos o índice do elemento atual no lado esquerdo)

... porque esse é o número de elementos que o elemento no lado direito da matriz teve que pular (número de inversões) para ser classificado.

func merge(arr: inout [Int], arr2: inout [Int], low: Int, mid: Int, high: Int) -> Int {
    var nSwaps = 0;

    var i = low;
    var iL = low;
    var iR = mid + 1;

    while iL <= mid && iR <= high {
        if arr2[iL] <= arr2[iR] {
            arr[i] = arr2[iL]
            iL += 1
            i += 1
        } else {
            arr[i] = arr2[iR]
            nSwaps += mid + 1 - iL
            iR += 1
            i += 1
        }
    }

    while iL <= mid {
        arr[i] = arr2[iL]
        iL += 1
        i += 1
    }

    while iR <= high {
        arr[i] = arr2[iR]
        iR += 1
        i += 1
    }

    return nSwaps
}

func mergeSort(arr: inout [Int]) -> Int {
    var arr2 = arr
    let nSwaps = mergeSort(arr: &arr, arr2: &arr2, low: 0, high: arr.count-1)
    return nSwaps
}

func mergeSort(arr: inout [Int], arr2: inout [Int], low: Int, high: Int) -> Int {

    if low >= high {
        return 0
    }

    let mid = low + ((high - low) / 2)

    var nSwaps = 0;
    nSwaps += mergeSort(arr: &arr2, arr2: &arr, low: low, high: mid)
    nSwaps += mergeSort(arr: &arr2, arr2: &arr, low: mid+1, high: high)
    nSwaps += merge(arr: &arr, arr2: &arr2, low: low, mid: mid, high: high)

    return nSwaps
}

var arrayToSort: [Int] = [2, 1, 3, 1, 2]
let nSwaps = mergeSort(arr: &arrayToSort)

print(arrayToSort) // [1, 1, 2, 2, 3]
print(nSwaps) // 4

0

A maioria das respostas é baseada em, MergeSortmas não é a única maneira de resolver isso é emO(nlogn)

Vou discutir algumas abordagens.

  1. Use um Balanced Binary Search Tree

    • Aumente sua árvore para armazenar frequências de elementos duplicados.
    • A ideia é continuar contando nós maiores quando a árvore é atravessada da raiz até uma folha para inserção.

Algo assim.

Node *insert(Node* root, int data, int& count){
    if(!root) return new Node(data);
    if(root->data == data){
        root->freq++;
        count += getSize(root->right);
    }
    else if(root->data > data){
        count += getSize(root->right) + root->freq;
        root->left = insert(root->left, data, count);
    }
    else root->right = insert(root->right, data, count);
    return balance(root);
}

int getCount(int *a, int n){
    int c = 0;
    Node *root = NULL;
    for(auto i=0; i<n; i++) root = insert(root, a[i], c);
    return c;
}
  1. Use um Binary Indexed Tree
    • Crie um BIT de soma.
    • Faça um loop a partir do final e comece a encontrar a contagem de elementos maiores.
int getInversions(int[] a) {
    int n = a.length, inversions = 0;
    int[] bit = new int[n+1];
    compress(a);
    BIT b = new BIT();
    for (int i=n-1; i>=0; i--) {
         inversions += b.getSum(bit, a[i] - 1);
         b.update(bit, n, a[i], 1);
     }
     return inversions;
}
  1. Use um Segment Tree
    • Crie uma Árvore de segmentos de soma.
    • Loop a partir do final da matriz e consulta entre [0, a[i]-1]e atualizara[i] with 1
int getInversions(int *a, int n) {
    int N = n + 1, c = 0;
    compress(a, n);
    int tree[N<<1] = {0};
    for (int i=n-1; i>=0; i--) {
        c+= query(tree, N, 0, a[i] - 1);
        update(tree, N, a[i], 1);
    }
    return c;
}

Além disso, ao usar BITou Segment-Treeuma boa ideia é fazerCoordinate compression

void compress(int *a, int n) {
    int temp[n];
    for (int i=0; i<n; i++) temp[i] = a[i];
    sort(temp, temp+n);
    for (int i=0; i<n; i++) a[i] = lower_bound(temp, temp+n, a[i]) - temp + 1;
}

0

C ++ Θ (n lg n) Solução com a impressão dos pares que se constituem na contagem de inversões.

int merge(vector<int>&nums , int low , int mid , int high){
    int size1 = mid - low +1;
    int size2= high - mid;
    vector<int>left;
    vector<int>right;
    for(int i = 0  ; i < size1 ; ++i){
        left.push_back(nums[low+i]);
    }
    for(int i = 0 ; i <size2 ; ++i){
        right.push_back(nums[mid+i+1]);
    }
    left.push_back(INT_MAX);
    right.push_back(INT_MAX);
    int i = 0 ;
    int j = 0;
    int start  = low;
    int inversion = 0 ;
    while(i < size1 && j < size2){
        if(left[i]<right[j]){
            nums[start] = left[i];
            start++;
            i++;
        }else{
            for(int l = i ; l < size1; ++l){
                cout<<"("<<left[l]<<","<<right[j]<<")"<<endl;
            }
            inversion += size1 - i;
            nums[start] = right[j];
            start++;
            j++;
        }
    }
    if(i == size1){
        for(int c = j ; c< size2 ; ++c){
            nums[start] = right[c];
            start++;
        }
    }
    if(j == size2){
        for(int c =  i ; c< size1 ; ++c){
            nums[start] = left[c];
            start++;
        }
    }
    return inversion;
}
int inversion_count(vector<int>& nums , int low , int high){
    if(high>low){
        int mid = low + (high-low)/2;
        int left = inversion_count(nums,low,mid);
        int right = inversion_count(nums,mid+1,high);
        int inversion = merge(nums,low,mid,high) + left + right;
        return inversion;
    }
    return 0 ;
}

-1

Use mergesort, em merge step incremeant counter se o número copiado para a saída for da matriz direita.


Incrementar o contador (presumivelmente em um) para cada elemento resultará em poucas inversões.
Bernhard Barker

-1

Recentemente, tive que fazer isso em R:

inversionNumber <- function(x){
    mergeSort <- function(x){
        if(length(x) == 1){
            inv <- 0
        } else {
            n <- length(x)
            n1 <- ceiling(n/2)
            n2 <- n-n1
            y1 <- mergeSort(x[1:n1])
            y2 <- mergeSort(x[n1+1:n2])
            inv <- y1$inversions + y2$inversions
            x1 <- y1$sortedVector
            x2 <- y2$sortedVector
            i1 <- 1
            i2 <- 1
            while(i1+i2 <= n1+n2+1){
                if(i2 > n2 || i1 <= n1 && x1[i1] <= x2[i2]){
                    x[i1+i2-1] <- x1[i1]
                    i1 <- i1 + 1
                } else {
                    inv <- inv + n1 + 1 - i1
                    x[i1+i2-1] <- x2[i2]
                    i2 <- i2 + 1
                }
            }
        }
        return (list(inversions=inv,sortedVector=x))
    }
    r <- mergeSort(x)
    return (r$inversions)
}

1
@Dukeling O que o levou a retirar seu comentário, mas não seu voto negativo?
Museful de
Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.