Respostas:
Se o pedido não for importante e você não precisar se preocupar com duplicatas, poderá usar a interseção definida:
>>> a = [1,2,3,4,5]
>>> b = [1,3,5,6]
>>> list(set(a) & set(b))
[1, 3, 5]
a = [1,1,2,3,4,5]
e b = [1,1,3,5,6]
, em seguida, o cruzamento é [1,1,3,5]
, mas pelo método acima que irá resultar em apenas um 1
ou seja, [1, 3, 5]
o que vai ser a forma escrita para fazê-lo, então?
intersection
é comumente entendido como definido com base. Você está procurando um animal um pouco diferente - e pode ser necessário fazer isso manualmente, classificando cada lista e mesclando os resultados - e mantendo os dups na mescla.
Usar a compreensão da lista é bastante óbvio para mim. Não tenho certeza do desempenho, mas pelo menos as coisas permanecem na lista.
[x for x in a if x in b]
Ou "todos os valores x que estão em A, se o valor X estiver em B".
b
um conjunto e você terá que O (n)
Se você converter a maior das duas listas em um conjunto, poderá obter a interseção desse conjunto com qualquer iterável usando intersection()
:
a = [1,2,3,4,5]
b = [1,3,5,6]
set(a).intersection(b)
list(set(a) & set(b))
Faça um conjunto do maior:
_auxset = set(a)
Então,
c = [x for x in b if x in _auxset]
fará o que você quer (preservar b
a ordem, não a
é - não pode necessariamente preservar as duas ) e fará rápido . (Usar if x in a
como condição na compreensão da lista também funcionaria e evitaria a necessidade de criar_auxset
, mas infelizmente para listas de tamanho substancial seria muito mais lento).
Se você deseja que o resultado seja classificado, em vez de preservar a ordem das duas listas, uma maneira ainda mais organizada pode ser:
c = sorted(set(a).intersection(b))
Aqui está um código Python 2 / Python 3 que gera informações de tempo para os métodos baseados em listas e em conjuntos de encontrar a interseção de duas listas.
Os algoritmos de compreensão pura da lista são O (n ^ 2), pois in
em uma lista há uma pesquisa linear. Os algoritmos baseados em conjuntos são O (n), pois a pesquisa de conjuntos é O (1) e a criação de conjuntos é O (n) (e a conversão de um conjunto em uma lista também é O (n)). Portanto, para n suficientemente grandes, os algoritmos baseados em conjuntos são mais rápidos, mas para pequenos n as despesas gerais da criação dos conjuntos os tornam mais lentos que os algoritmos de compilação de lista pura.
#!/usr/bin/env python
''' Time list- vs set-based list intersection
See http://stackoverflow.com/q/3697432/4014959
Written by PM 2Ring 2015.10.16
'''
from __future__ import print_function, division
from timeit import Timer
setup = 'from __main__ import a, b'
cmd_lista = '[u for u in a if u in b]'
cmd_listb = '[u for u in b if u in a]'
cmd_lcsa = 'sa=set(a);[u for u in b if u in sa]'
cmd_seta = 'list(set(a).intersection(b))'
cmd_setb = 'list(set(b).intersection(a))'
reps = 3
loops = 50000
def do_timing(heading, cmd, setup):
t = Timer(cmd, setup)
r = t.repeat(reps, loops)
r.sort()
print(heading, r)
return r[0]
m = 10
nums = list(range(6 * m))
for n in range(1, m + 1):
a = nums[:6*n:2]
b = nums[:6*n:3]
print('\nn =', n, len(a), len(b))
#print('\nn = %d\n%s %d\n%s %d' % (n, a, len(a), b, len(b)))
la = do_timing('lista', cmd_lista, setup)
lb = do_timing('listb', cmd_listb, setup)
lc = do_timing('lcsa ', cmd_lcsa, setup)
sa = do_timing('seta ', cmd_seta, setup)
sb = do_timing('setb ', cmd_setb, setup)
print(la/sa, lb/sa, lc/sa, la/sb, lb/sb, lc/sb)
resultado
n = 1 3 2
lista [0.082171916961669922, 0.082588911056518555, 0.0898590087890625]
listb [0.069530963897705078, 0.070394992828369141, 0.075379848480224609]
lcsa [0.11858987808227539, 0.1188349723815918, 0.12825107574462891]
seta [0.26900982856750488, 0.26902294158935547, 0.27298116683959961]
setb [0.27218389511108398, 0.27459001541137695, 0.34307217597961426]
0.305460649521 0.258469975867 0.440838458259 0.301898526833 0.255455833892 0.435697630214
n = 2 6 4
lista [0.15915989875793457, 0.16000485420227051, 0.16551494598388672]
listb [0.13000702857971191, 0.13060092926025391, 0.13543915748596191]
lcsa [0.18650484085083008, 0.18742108345031738, 0.19513416290283203]
seta [0.33592700958251953, 0.34001994132995605, 0.34146714210510254]
setb [0.29436492919921875, 0.2953648567199707, 0.30039691925048828]
0.473793098554 0.387009751735 0.555194537893 0.540689066428 0.441652573672 0.633583767462
n = 3 9 6
lista [0.27657914161682129, 0.28098297119140625, 0.28311991691589355]
listb [0.21585917472839355, 0.21679902076721191, 0.22272896766662598]
lcsa [0.22559309005737305, 0.2271728515625, 0.2323150634765625]
seta [0.36382699012756348, 0.36453008651733398, 0.36750602722167969]
setb [0.34979605674743652, 0.35533690452575684, 0.36164689064025879]
0.760194128313 0.59330170819 0.62005595016 0.790686848184 0.61710008036 0.644927481902
n = 4 12 8
lista [0.39616990089416504, 0.39746403694152832, 0.41129183769226074]
listb [0.33485794067382812, 0.33914685249328613, 0.37850618362426758]
lcsa [0.27405810356140137, 0.2745978832244873, 0.28249192237854004]
seta [0.39211201667785645, 0.39234519004821777, 0.39317893981933594]
setb [0.36988520622253418, 0.37011313438415527, 0.37571001052856445]
1.01034878821 0.85398540833 0.698928091731 1.07106176249 0.905302334456 0.740927452493
n = 5 15 10
lista [0.56792402267456055, 0.57422614097595215, 0.57740211486816406]
listb [0.47309303283691406, 0.47619009017944336, 0.47628307342529297]
lcsa [0.32805585861206055, 0.32813096046447754, 0.3349759578704834]
seta [0.40036201477050781, 0.40322518348693848, 0.40548801422119141]
setb [0.39103078842163086, 0.39722800254821777, 0.43811702728271484]
1.41852623806 1.18166313332 0.819398061028 1.45237674242 1.20986133789 0.838951479847
n = 6 18 12
lista [0.77897095680236816, 0.78187918663024902, 0.78467702865600586]
listb [0.629547119140625, 0.63210701942443848, 0.63321495056152344]
lcsa [0.36563992500305176, 0.36638498306274414, 0.38175487518310547]
seta [0.46695613861083984, 0.46992206573486328, 0.47583580017089844]
setb [0.47616910934448242, 0.47661614418029785, 0.4850609302520752]
1.66818870637 1.34819326075 0.783028414812 1.63591241329 1.32210827369 0.767878297495
n = 7 21 14
lista [0.9703209400177002, 0.9734041690826416, 1.0182771682739258]
listb [0.82394003868103027, 0.82625699043273926, 0.82796716690063477]
lcsa [0.40975093841552734, 0.41210508346557617, 0.42286920547485352]
seta [0.5086359977722168, 0.50968098640441895, 0.51014018058776855]
setb [0.48688101768493652, 0.4879908561706543, 0.49204087257385254]
1.90769222837 1.61990115188 0.805587768483 1.99293236904 1.69228211566 0.841583309951
n = 8 24 16
lista [1.204819917678833, 1.2206029891967773, 1.258256196975708]
listb [1.014998197555542, 1.0206191539764404, 1.0343101024627686]
lcsa [0.50966787338256836, 0.51018595695495605, 0.51319599151611328]
seta [0.50310111045837402, 0.50556015968322754, 0.51335406303405762]
setb [0.51472997665405273, 0.51948785781860352, 0.52113485336303711]
2.39478683834 2.01748351664 1.01305257092 2.34068341135 1.97190418975 0.990165516871
n = 9 27 18
lista [1.511646032333374, 1.5133969783782959, 1.5639569759368896]
listb [1.2461750507354736, 1.254518985748291, 1.2613379955291748]
lcsa [0.5565330982208252, 0.56119203567504883, 0.56451296806335449]
seta [0.5966339111328125, 0.60275578498840332, 0.64791703224182129]
setb [0.54694414138793945, 0.5508568286895752, 0.55375313758850098]
2.53362406013 2.08867620074 0.932788243907 2.76380331728 2.27843203069 1.01753187594
n = 10 30 20
lista [1.7777848243713379, 2.1453688144683838, 2.4085969924926758]
listb [1.5070111751556396, 1.5202279090881348, 1.5779800415039062]
lcsa [0.5954139232635498, 0.59703707695007324, 0.60746097564697266]
seta [0.61563014984130859, 0.62125110626220703, 0.62354087829589844]
setb [0.56723213195800781, 0.57257509231567383, 0.57460403442382812]
2.88774814689 2.44791645689 0.967161734066 3.13413984189 2.6567803378 1.04968299523
Gerado usando uma máquina de núcleo único de 2 GHz com 2 GB de RAM executando o Python 2.6.6 em uma versão Debian do Linux (com o Firefox sendo executado em segundo plano).
Esses números são apenas um guia aproximado, pois as velocidades reais dos vários algoritmos são afetadas de maneira diferente pela proporção de elementos que estão nas duas listas de fontes.
Uma maneira funcional pode ser conseguida utilizando filter
e lambda
operador.
list1 = [1,2,3,4,5,6]
list2 = [2,4,6,9,10]
>>> list(filter(lambda x:x in list1, list2))
[2, 4, 6]
Editar: filtra x que existe na lista1 e na lista, a diferença de conjunto também pode ser obtida usando:
>>> list(filter(lambda x:x not in list1, list2))
[9,10]
Edit2: python3 filter
retorna um objeto de filtro, encapsulando-o com list
retorna a lista de saída.
list(filter(lambda x:x in list1, list2))
para obtê-lo como uma lista.
Este é um exemplo em que você precisa Cada elemento no resultado deve aparecer quantas vezes for mostrado nas duas matrizes.
def intersection(nums1, nums2):
#example:
#nums1 = [1,2,2,1]
#nums2 = [2,2]
#output = [2,2]
#find first 2 and remove from target, continue iterating
target, iterate = [nums1, nums2] if len(nums2) >= len(nums1) else [nums2, nums1] #iterate will look into target
if len(target) == 0:
return []
i = 0
store = []
while i < len(iterate):
element = iterate[i]
if element in target:
store.append(element)
target.remove(element)
i += 1
return store
Pode ser tarde, mas achei que deveria compartilhar para o caso em que você é obrigado a fazê-lo manualmente (mostrar trabalho - haha) OU quando você precisar que todos os elementos apareçam o máximo de vezes possível ou quando você também precisar que seja exclusivo .
Por favor, note que os testes também foram escritos para isso.
from nose.tools import assert_equal
'''
Given two lists, print out the list of overlapping elements
'''
def overlap(l_a, l_b):
'''
compare the two lists l_a and l_b and return the overlapping
elements (intersecting) between the two
'''
#edge case is when they are the same lists
if l_a == l_b:
return [] #no overlapping elements
output = []
if len(l_a) == len(l_b):
for i in range(l_a): #same length so either one applies
if l_a[i] in l_b:
output.append(l_a[i])
#found all by now
#return output #if repetition does not matter
return list(set(output))
else:
#find the smallest and largest lists and go with that
sm = l_a if len(l_a) len(l_b) else l_b
for i in range(len(sm)):
if sm[i] in lg:
output.append(sm[i])
#return output #if repetition does not matter
return list(set(output))
## Test the Above Implementation
a = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
b = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
exp = [1, 2, 3, 5, 8, 13]
c = [4, 4, 5, 6]
d = [5, 7, 4, 8 ,6 ] #assuming it is not ordered
exp2 = [4, 5, 6]
class TestOverlap(object):
def test(self, sol):
t = sol(a, b)
assert_equal(t, exp)
print('Comparing the two lists produces')
print(t)
t = sol(c, d)
assert_equal(t, exp2)
print('Comparing the two lists produces')
print(t)
print('All Tests Passed!!')
t = TestOverlap()
t.test(overlap)
Você também pode usar um contador! Ele não preserva o pedido, mas considera as duplicatas:
>>> from collections import Counter
>>> a = [1,2,3,4,5]
>>> b = [1,3,5,6]
>>> d1, d2 = Counter(a), Counter(b)
>>> c = [n for n in d1.keys() & d2.keys() for _ in range(min(d1[n], d2[n]))]
>>> print(c)
[1,3,5]
a and b
funciona como a seguinte declaração da documentação a menciona: " A expressãox and y
primeiro avaliax
; sex
for falsa, seu valor é retornado; caso contrário,y
é avaliado e o valor resultante é retornado. "