Estou brincando com o conjunto de dados reuters-example e ele funciona bem (meu modelo foi treinado). Li sobre como salvar um modelo, para poder carregá-lo mais tarde para usar novamente. Mas como faço para usar este modelo salvo para prever um novo texto? Eu uso models.predict()?
Devo preparar este texto de uma forma especial?
Eu tentei com
import keras.preprocessing.text
text = np.array(['this is just some random, stupid text'])
print(text.shape)
tk = keras.preprocessing.text.Tokenizer(
nb_words=2000,
filters=keras.preprocessing.text.base_filter(),
lower=True,
split=" ")
tk.fit_on_texts(text)
pred = tk.texts_to_sequences(text)
print(pred)
model.predict(pred)
Mas eu sempre consigo
(1L,)
[[2, 4, 1, 6, 5, 7, 3]]
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-83-42d744d811fb> in <module>()
7 print(pred)
8
----> 9 model.predict(pred)
C:\Users\bkey\Anaconda2\lib\site-packages\keras\models.pyc in predict(self, x, batch_size, verbose)
457 if self.model is None:
458 self.build()
--> 459 return self.model.predict(x, batch_size=batch_size, verbose=verbose)
460
461 def predict_on_batch(self, x):
C:\Users\bkey\Anaconda2\lib\site-packages\keras\engine\training.pyc in predict(self, x, batch_size, verbose)
1132 x = standardize_input_data(x, self.input_names,
1133 self.internal_input_shapes,
-> 1134 check_batch_dim=False)
1135 if self.stateful:
1136 if x[0].shape[0] > batch_size and x[0].shape[0] % batch_size != 0:
C:\Users\bkey\Anaconda2\lib\site-packages\keras\engine\training.pyc in standardize_input_data(data, names, shapes, check_batch_dim, exception_prefix)
79 for i in range(len(names)):
80 array = arrays[i]
---> 81 if len(array.shape) == 1:
82 array = np.expand_dims(array, 1)
83 arrays[i] = array
AttributeError: 'list' object has no attribute 'shape'
Você tem alguma recomendação sobre como fazer previsões com um modelo treinado?