Estou procurando uma função que tome como entrada duas listas e retorne a correlação de Pearson e o significado da correlação.
Estou procurando uma função que tome como entrada duas listas e retorne a correlação de Pearson e o significado da correlação.
Respostas:
Você pode dar uma olhada em scipy.stats
:
from pydoc import help
from scipy.stats.stats import pearsonr
help(pearsonr)
>>>
Help on function pearsonr in module scipy.stats.stats:
pearsonr(x, y)
Calculates a Pearson correlation coefficient and the p-value for testing
non-correlation.
The Pearson correlation coefficient measures the linear relationship
between two datasets. Strictly speaking, Pearson's correlation requires
that each dataset be normally distributed. Like other correlation
coefficients, this one varies between -1 and +1 with 0 implying no
correlation. Correlations of -1 or +1 imply an exact linear
relationship. Positive correlations imply that as x increases, so does
y. Negative correlations imply that as x increases, y decreases.
The p-value roughly indicates the probability of an uncorrelated system
producing datasets that have a Pearson correlation at least as extreme
as the one computed from these datasets. The p-values are not entirely
reliable but are probably reasonable for datasets larger than 500 or so.
Parameters
----------
x : 1D array
y : 1D array the same length as x
Returns
-------
(Pearson's correlation coefficient,
2-tailed p-value)
References
----------
http://www.statsoft.com/textbook/glosp.html#Pearson%20Correlation
A correlação de Pearson pode ser calculada com numpy corrcoef
.
import numpy
numpy.corrcoef(list1, list2)[0, 1]
Uma alternativa pode ser uma função scipy nativa do linregress que calcula:
inclinação: inclinação da linha de regressão
interceptação: interceptação da linha de regressão
Valor r: coeficiente de correlação
Valor p: valor p frente e verso para um teste de hipótese cuja hipótese nula é a de que a inclinação é zero
stderr: erro padrão da estimativa
E aqui está um exemplo:
a = [15, 12, 8, 8, 7, 7, 7, 6, 5, 3]
b = [10, 25, 17, 11, 13, 17, 20, 13, 9, 15]
from scipy.stats import linregress
linregress(a, b)
retornará você:
LinregressResult(slope=0.20833333333333337, intercept=13.375, rvalue=0.14499815458068521, pvalue=0.68940144811669501, stderr=0.50261704627083648)
lineregress(two_row_df)
Se você não deseja instalar o scipy, usei esse hack rápido, ligeiramente modificado em Programming Collective Intelligence :
(Editado para correção.)
from itertools import imap
def pearsonr(x, y):
# Assume len(x) == len(y)
n = len(x)
sum_x = float(sum(x))
sum_y = float(sum(y))
sum_x_sq = sum(map(lambda x: pow(x, 2), x))
sum_y_sq = sum(map(lambda x: pow(x, 2), y))
psum = sum(imap(lambda x, y: x * y, x, y))
num = psum - (sum_x * sum_y/n)
den = pow((sum_x_sq - pow(sum_x, 2) / n) * (sum_y_sq - pow(sum_y, 2) / n), 0.5)
if den == 0: return 0
return num / den
TypeError: unsupported operand type(s) for -: 'itertools.imap' and 'float'
atnum = psum - (sum_x * sum_y/n)
O código a seguir é uma interpretação direta da definição :
import math
def average(x):
assert len(x) > 0
return float(sum(x)) / len(x)
def pearson_def(x, y):
assert len(x) == len(y)
n = len(x)
assert n > 0
avg_x = average(x)
avg_y = average(y)
diffprod = 0
xdiff2 = 0
ydiff2 = 0
for idx in range(n):
xdiff = x[idx] - avg_x
ydiff = y[idx] - avg_y
diffprod += xdiff * ydiff
xdiff2 += xdiff * xdiff
ydiff2 += ydiff * ydiff
return diffprod / math.sqrt(xdiff2 * ydiff2)
Teste:
print pearson_def([1,2,3], [1,5,7])
retorna
0.981980506062
Isso concorda com o Excel, esta calculadora , SciPy (também NumPy ), que retorna 0,981980506 e 0,9819805060619657 e 0,98198050606196574, respectivamente.
R :
> cor( c(1,2,3), c(1,5,7))
[1] 0.9819805
EDIT : Corrigido um bug apontado por um comentarista.
sum(x) / len(x)
você divide ints, não flutua. Então sum([1,5,7]) / len([1,5,7]) = 13 / 3 = 4
, de acordo com a divisão inteira (enquanto você deseja 13. / 3. = 4.33...
). Para corrigi-lo, reescreva esta linha como float(sum(x)) / float(len(x))
(um float é suficiente, pois o Python a converte automaticamente).
Você também pode fazer isso com pandas.DataFrame.corr
:
import pandas as pd
a = [[1, 2, 3],
[5, 6, 9],
[5, 6, 11],
[5, 6, 13],
[5, 3, 13]]
df = pd.DataFrame(data=a)
df.corr()
Isto dá
0 1 2
0 1.000000 0.745601 0.916579
1 0.745601 1.000000 0.544248
2 0.916579 0.544248 1.000000
Em vez de depender de numpy / scipy, acho que minha resposta deve ser a mais fácil de codificar e entender as etapas do cálculo do coeficiente de correlação de Pearson (PCC).
import math
# calculates the mean
def mean(x):
sum = 0.0
for i in x:
sum += i
return sum / len(x)
# calculates the sample standard deviation
def sampleStandardDeviation(x):
sumv = 0.0
for i in x:
sumv += (i - mean(x))**2
return math.sqrt(sumv/(len(x)-1))
# calculates the PCC using both the 2 functions above
def pearson(x,y):
scorex = []
scorey = []
for i in x:
scorex.append((i - mean(x))/sampleStandardDeviation(x))
for j in y:
scorey.append((j - mean(y))/sampleStandardDeviation(y))
# multiplies both lists together into 1 list (hence zip) and sums the whole list
return (sum([i*j for i,j in zip(scorex,scorey)]))/(len(x)-1)
O significado do PCC é basicamente mostrar o quão fortemente correlacionadas as duas variáveis / listas estão. É importante observar que o valor do PCC varia de -1 a 1 . Um valor entre 0 e 1 indica uma correlação positiva. Valor de 0 = variação mais alta (sem correlação). Um valor entre -1 e 0 indica uma correlação negativa.
sum
função interna .
Cálculo do coeficiente de Pearson usando pandas em python: sugiro tentar essa abordagem, pois seus dados contêm listas. Será fácil interagir com seus dados e manipulá-los no console, pois você pode visualizar sua estrutura de dados e atualizá-la como desejar. Você também pode exportar o conjunto de dados, salvá-lo e adicionar novos dados a partir do console python para análise posterior. Este código é mais simples e contém menos linhas de código. Suponho que você precise de algumas linhas rápidas de código para rastrear seus dados para análise posterior
Exemplo:
data = {'list 1':[2,4,6,8],'list 2':[4,16,36,64]}
import pandas as pd #To Convert your lists to pandas data frames convert your lists into pandas dataframes
df = pd.DataFrame(data, columns = ['list 1','list 2'])
from scipy import stats # For in-built method to get PCC
pearson_coef, p_value = stats.pearsonr(df["list 1"], df["list 2"]) #define the columns to perform calculations on
print("Pearson Correlation Coefficient: ", pearson_coef, "and a P-value of:", p_value) # Results
No entanto, você não publicou seus dados para ver o tamanho do conjunto de dados ou as transformações que podem ser necessárias antes da análise.
Hmm, muitas dessas respostas têm código longo e difícil de ler ...
Eu sugiro usar numpy com seus recursos bacanas ao trabalhar com matrizes:
import numpy as np
def pcc(X, Y):
''' Compute Pearson Correlation Coefficient. '''
# Normalise X and Y
X -= X.mean(0)
Y -= Y.mean(0)
# Standardise X and Y
X /= X.std(0)
Y /= Y.std(0)
# Compute mean product
return np.mean(X*Y)
# Using it on a random example
from random import random
X = np.array([random() for x in xrange(100)])
Y = np.array([random() for x in xrange(100)])
pcc(X, Y)
Esta é uma implementação da função Correlação de Pearson usando numpy:
def corr(data1, data2):
"data1 & data2 should be numpy arrays."
mean1 = data1.mean()
mean2 = data2.mean()
std1 = data1.std()
std2 = data2.std()
# corr = ((data1-mean1)*(data2-mean2)).mean()/(std1*std2)
corr = ((data1*data2).mean()-mean1*mean2)/(std1*std2)
return corr
Aqui está uma variante da resposta do mkh que corre muito mais rápido que ela e scipy.stats.pearsonr, usando o numba.
import numba
@numba.jit
def corr(data1, data2):
M = data1.size
sum1 = 0.
sum2 = 0.
for i in range(M):
sum1 += data1[i]
sum2 += data2[i]
mean1 = sum1 / M
mean2 = sum2 / M
var_sum1 = 0.
var_sum2 = 0.
cross_sum = 0.
for i in range(M):
var_sum1 += (data1[i] - mean1) ** 2
var_sum2 += (data2[i] - mean2) ** 2
cross_sum += (data1[i] * data2[i])
std1 = (var_sum1 / M) ** .5
std2 = (var_sum2 / M) ** .5
cross_mean = cross_sum / M
return (cross_mean - mean1 * mean2) / (std1 * std2)
Aqui está uma implementação para a correlação de pearson com base no vetor esparso. Os vetores aqui são expressos como uma lista de tuplas expressas como (índice, valor). Os dois vetores esparsos podem ter comprimentos diferentes, mas o tamanho de todo o vetor deverá ser o mesmo. Isso é útil para aplicativos de mineração de texto em que o tamanho do vetor é extremamente grande devido ao fato de a maioria dos recursos serem um conjunto de palavras e, portanto, os cálculos geralmente são realizados usando vetores esparsos.
def get_pearson_corelation(self, first_feature_vector=[], second_feature_vector=[], length_of_featureset=0):
indexed_feature_dict = {}
if first_feature_vector == [] or second_feature_vector == [] or length_of_featureset == 0:
raise ValueError("Empty feature vectors or zero length of featureset in get_pearson_corelation")
sum_a = sum(value for index, value in first_feature_vector)
sum_b = sum(value for index, value in second_feature_vector)
avg_a = float(sum_a) / length_of_featureset
avg_b = float(sum_b) / length_of_featureset
mean_sq_error_a = sqrt((sum((value - avg_a) ** 2 for index, value in first_feature_vector)) + ((
length_of_featureset - len(first_feature_vector)) * ((0 - avg_a) ** 2)))
mean_sq_error_b = sqrt((sum((value - avg_b) ** 2 for index, value in second_feature_vector)) + ((
length_of_featureset - len(second_feature_vector)) * ((0 - avg_b) ** 2)))
covariance_a_b = 0
#calculate covariance for the sparse vectors
for tuple in first_feature_vector:
if len(tuple) != 2:
raise ValueError("Invalid feature frequency tuple in featureVector: %s") % (tuple,)
indexed_feature_dict[tuple[0]] = tuple[1]
count_of_features = 0
for tuple in second_feature_vector:
count_of_features += 1
if len(tuple) != 2:
raise ValueError("Invalid feature frequency tuple in featureVector: %s") % (tuple,)
if tuple[0] in indexed_feature_dict:
covariance_a_b += ((indexed_feature_dict[tuple[0]] - avg_a) * (tuple[1] - avg_b))
del (indexed_feature_dict[tuple[0]])
else:
covariance_a_b += (0 - avg_a) * (tuple[1] - avg_b)
for index in indexed_feature_dict:
count_of_features += 1
covariance_a_b += (indexed_feature_dict[index] - avg_a) * (0 - avg_b)
#adjust covariance with rest of vector with 0 value
covariance_a_b += (length_of_featureset - count_of_features) * -avg_a * -avg_b
if mean_sq_error_a == 0 or mean_sq_error_b == 0:
return -1
else:
return float(covariance_a_b) / (mean_sq_error_a * mean_sq_error_b)
Testes unitários:
def test_get_get_pearson_corelation(self):
vector_a = [(1, 1), (2, 2), (3, 3)]
vector_b = [(1, 1), (2, 5), (3, 7)]
self.assertAlmostEquals(self.sim_calculator.get_pearson_corelation(vector_a, vector_b, 3), 0.981980506062, 3, None, None)
vector_a = [(1, 1), (2, 2), (3, 3)]
vector_b = [(1, 1), (2, 5), (3, 7), (4, 14)]
self.assertAlmostEquals(self.sim_calculator.get_pearson_corelation(vector_a, vector_b, 5), -0.0137089240555, 3, None, None)
Eu tenho uma solução muito simples e fácil de entender para isso. Para duas matrizes de comprimento igual, o coeficiente de Pearson pode ser facilmente calculado da seguinte maneira:
def manual_pearson(a,b):
"""
Accepts two arrays of equal length, and computes correlation coefficient.
Numerator is the sum of product of (a - a_avg) and (b - b_avg),
while denominator is the product of a_std and b_std multiplied by
length of array.
"""
a_avg, b_avg = np.average(a), np.average(b)
a_stdev, b_stdev = np.std(a), np.std(b)
n = len(a)
denominator = a_stdev * b_stdev * n
numerator = np.sum(np.multiply(a-a_avg, b-b_avg))
p_coef = numerator/denominator
return p_coef
Você pode se perguntar como interpretar sua probabilidade no contexto de procurar uma correlação em uma direção específica (correlação negativa ou positiva). Aqui está uma função que escrevi para ajudar nisso. Pode até estar certo!
É baseado nas informações que eu colhi de http://www.vassarstats.net/rsig.html e http://en.wikipedia.org/wiki/Student%27s_t_distribution , graças a outras respostas postadas aqui.
# Given (possibly random) variables, X and Y, and a correlation direction,
# returns:
# (r, p),
# where r is the Pearson correlation coefficient, and p is the probability
# that there is no correlation in the given direction.
#
# direction:
# if positive, p is the probability that there is no positive correlation in
# the population sampled by X and Y
# if negative, p is the probability that there is no negative correlation
# if 0, p is the probability that there is no correlation in either direction
def probabilityNotCorrelated(X, Y, direction=0):
x = len(X)
if x != len(Y):
raise ValueError("variables not same len: " + str(x) + ", and " + \
str(len(Y)))
if x < 6:
raise ValueError("must have at least 6 samples, but have " + str(x))
(corr, prb_2_tail) = stats.pearsonr(X, Y)
if not direction:
return (corr, prb_2_tail)
prb_1_tail = prb_2_tail / 2
if corr * direction > 0:
return (corr, prb_1_tail)
return (corr, 1 - prb_1_tail)
Você pode dar uma olhada neste artigo. Este é um exemplo bem documentado para calcular a correlação com base nos dados históricos dos pares de moedas cambiais de vários arquivos usando a biblioteca pandas (para Python) e depois gerar um gráfico de mapa de calor usando a biblioteca marítima.
http://www.tradinggeeks.net/2015/08/calculating-correlation-in-python/
def pearson(x,y):
n=len(x)
vals=range(n)
sumx=sum([float(x[i]) for i in vals])
sumy=sum([float(y[i]) for i in vals])
sumxSq=sum([x[i]**2.0 for i in vals])
sumySq=sum([y[i]**2.0 for i in vals])
pSum=sum([x[i]*y[i] for i in vals])
# Calculating Pearson correlation
num=pSum-(sumx*sumy/n)
den=((sumxSq-pow(sumx,2)/n)*(sumySq-pow(sumy,2)/n))**.5
if den==0: return 0
r=num/den
return r