Decidi executar novamente o teste em minha própria máquina usando o código Lik32. Eu tive que mudar isso devido ao meu windows ou compilador pensando que a alta resolução é de 1ms, usando
mingw32-g ++. exe -O3 -Wall -std = c ++ 11 -exceções -g
vector<int> rand_vec(10000000);
O GCC fez a mesma transformação nos dois códigos originais.
Observe que apenas as duas primeiras condições são testadas, pois a terceira sempre deve ser verdadeira; o GCC é uma espécie de Sherlock aqui.
Reverter
.L233:
mov DWORD PTR [rsp+104], 0
mov DWORD PTR [rsp+100], 0
mov DWORD PTR [rsp+96], 0
call std::chrono::_V2::system_clock::now()
mov rbp, rax
mov rax, QWORD PTR [rsp+8]
jmp .L219
.L293:
mov edx, DWORD PTR [rsp+104]
add edx, 1
mov DWORD PTR [rsp+104], edx
.L217:
add rax, 4
cmp r14, rax
je .L292
.L219:
mov edx, DWORD PTR [rax]
cmp edx, 94
jg .L293 // >= 95
cmp edx, 19
jg .L218 // >= 20
mov edx, DWORD PTR [rsp+96]
add rax, 4
add edx, 1 // < 20 Sherlock
mov DWORD PTR [rsp+96], edx
cmp r14, rax
jne .L219
.L292:
call std::chrono::_V2::system_clock::now()
.L218: // further down
mov edx, DWORD PTR [rsp+100]
add edx, 1
mov DWORD PTR [rsp+100], edx
jmp .L217
And sorted
mov DWORD PTR [rsp+104], 0
mov DWORD PTR [rsp+100], 0
mov DWORD PTR [rsp+96], 0
call std::chrono::_V2::system_clock::now()
mov rbp, rax
mov rax, QWORD PTR [rsp+8]
jmp .L226
.L296:
mov edx, DWORD PTR [rsp+100]
add edx, 1
mov DWORD PTR [rsp+100], edx
.L224:
add rax, 4
cmp r14, rax
je .L295
.L226:
mov edx, DWORD PTR [rax]
lea ecx, [rdx-20]
cmp ecx, 74
jbe .L296
cmp edx, 19
jle .L297
mov edx, DWORD PTR [rsp+104]
add rax, 4
add edx, 1
mov DWORD PTR [rsp+104], edx
cmp r14, rax
jne .L226
.L295:
call std::chrono::_V2::system_clock::now()
.L297: // further down
mov edx, DWORD PTR [rsp+96]
add edx, 1
mov DWORD PTR [rsp+96], edx
jmp .L224
Portanto, isso não nos diz muito, exceto que o último caso não precisa de uma previsão de ramificação.
Agora eu tentei todas as 6 combinações dos if's, os 2 primeiros são o reverso original e classificados. high é> = 95, low é <20, mid é 20-94 com 10000000 iterações cada.
high, low, mid: 43000000ns
mid, low, high: 46000000ns
high, mid, low: 45000000ns
low, mid, high: 44000000ns
mid, high, low: 46000000ns
low, high, mid: 44000000ns
high, low, mid: 44000000ns
mid, low, high: 47000000ns
high, mid, low: 44000000ns
low, mid, high: 45000000ns
mid, high, low: 46000000ns
low, high, mid: 45000000ns
high, low, mid: 43000000ns
mid, low, high: 47000000ns
high, mid, low: 44000000ns
low, mid, high: 45000000ns
mid, high, low: 46000000ns
low, high, mid: 44000000ns
high, low, mid: 42000000ns
mid, low, high: 46000000ns
high, mid, low: 46000000ns
low, mid, high: 45000000ns
mid, high, low: 46000000ns
low, high, mid: 43000000ns
high, low, mid: 43000000ns
mid, low, high: 47000000ns
high, mid, low: 44000000ns
low, mid, high: 44000000ns
mid, high, low: 46000000ns
low, high, mid: 44000000ns
high, low, mid: 43000000ns
mid, low, high: 48000000ns
high, mid, low: 44000000ns
low, mid, high: 44000000ns
mid, high, low: 45000000ns
low, high, mid: 45000000ns
high, low, mid: 43000000ns
mid, low, high: 47000000ns
high, mid, low: 45000000ns
low, mid, high: 45000000ns
mid, high, low: 46000000ns
low, high, mid: 44000000ns
high, low, mid: 43000000ns
mid, low, high: 47000000ns
high, mid, low: 45000000ns
low, mid, high: 45000000ns
mid, high, low: 46000000ns
low, high, mid: 44000000ns
high, low, mid: 43000000ns
mid, low, high: 46000000ns
high, mid, low: 45000000ns
low, mid, high: 45000000ns
mid, high, low: 45000000ns
low, high, mid: 44000000ns
high, low, mid: 42000000ns
mid, low, high: 46000000ns
high, mid, low: 44000000ns
low, mid, high: 45000000ns
mid, high, low: 45000000ns
low, high, mid: 44000000ns
1900020, 7498968, 601012
Process returned 0 (0x0) execution time : 2.899 s
Press any key to continue.
Então, por que o pedido é alto, baixo, médio e mais rápido (marginalmente)
Porque o mais imprevisível é o último e, portanto, nunca é executado através de um preditor de ramificação.
if (i >= 95) ++nHigh; // most predictable with 94% taken
else if (i < 20) ++nLow; // (94-19)/94% taken ~80% taken
else if (i >= 20 && i < 95) ++nMid; // never taken as this is the remainder of the outfalls.
Portanto, os galhos serão preditos tomados, tomados e restantes com
6% + (0,94 *) 20% de imprevistos.
"Ordenado"
if (i >= 20 && i < 95) ++nMid; // 75% not taken
else if (i < 20) ++nLow; // 19/25 76% not taken
else if (i >= 95) ++nHigh; //Least likely branch
Os galhos serão previstos com não capturados, não capturados e Sherlock.
25% + (0,75 *) 24% de imprevistos
Dando diferença de 18 a 23% (diferença medida de ~ 9%), mas precisamos calcular ciclos em vez de% imprevisível.
Vamos assumir uma pena de 17 ciclos de imprevisibilidade na minha CPU Nehalem e que cada verificação leva 1 ciclo para emitir (4-5 instruções) e o loop também leva um ciclo. As dependências de dados são os contadores e as variáveis de loop, mas uma vez que os erros de previsão estão fora do caminho, isso não deve influenciar o tempo.
Portanto, para "reverso", obtemos os horários (essa deve ser a fórmula usada em Arquitetura de Computadores: Uma Abordagem Quantitativa IIRC).
mispredict*penalty+count+loop
0.06*17+1+1+ (=3.02)
(propability)*(first check+mispredict*penalty+count+loop)
(0.19)*(1+0.20*17+1+1)+ (= 0.19*6.4=1.22)
(propability)*(first check+second check+count+loop)
(0.75)*(1+1+1+1) (=3)
= 7.24 cycles per iteration
e o mesmo para "classificado"
0.25*17+1+1+ (=6.25)
(1-0.75)*(1+0.24*17+1+1)+ (=.25*7.08=1.77)
(1-0.75-0.19)*(1+1+1+1) (= 0.06*4=0.24)
= 8.26
(8,26-7,24) / 8,26 = 13,8% vs. ~ 9% medido (próximo ao medido!?!).
Portanto, o óbvio do OP não é óbvio.
Com esses testes, outros testes com código mais complicado ou mais dependências de dados certamente serão diferentes; portanto, avalie seu caso.
Alterar a ordem do teste alterou os resultados, mas isso pode ser devido a diferentes alinhamentos do início do loop, que devem idealmente ser alinhados em 16 bytes em todas as CPUs Intel mais recentes, mas não são neste caso.