As respostas acima abordaram muito bem a questão do porquê . Eu só quero adicionar um exemplo para entender melhor o uso de pack_padded_sequence
.
Vamos dar um exemplo
Nota: pack_padded_sequence
requer sequências classificadas no lote (na ordem decrescente dos comprimentos da sequência). No exemplo abaixo, o lote da sequência já foi classificado para menos desordem. Visite este link principal para a implementação completa.
Primeiro, criamos um lote de 2 sequências de comprimentos de sequência diferentes, conforme abaixo. Temos 7 elementos no lote totalmente.
- Cada sequência tem um tamanho de incorporação de 2.
- A primeira sequência tem o comprimento: 5
- A segunda sequência tem o comprimento: 2
import torch
seq_batch = [torch.tensor([[1, 1],
[2, 2],
[3, 3],
[4, 4],
[5, 5]]),
torch.tensor([[10, 10],
[20, 20]])]
seq_lens = [5, 2]
Nós preenchemos seq_batch
para obter o lote de sequências com comprimento igual a 5 (o comprimento máximo no lote). Agora, o novo lote conta com 10 elementos no total.
padded_seq_batch = torch.nn.utils.rnn.pad_sequence(seq_batch, batch_first=True)
"""
>>>padded_seq_batch
tensor([[[ 1, 1],
[ 2, 2],
[ 3, 3],
[ 4, 4],
[ 5, 5]],
[[10, 10],
[20, 20],
[ 0, 0],
[ 0, 0],
[ 0, 0]]])
"""
Em seguida, embalamos o padded_seq_batch
. Ele retorna uma tupla de dois tensores:
- O primeiro são os dados que incluem todos os elementos no lote de sequência.
- O segundo é o
batch_sizes
que dirá como os elementos se relacionam entre si pelas etapas.
packed_seq_batch = torch.nn.utils.rnn.pack_padded_sequence(padded_seq_batch, lengths=seq_lens, batch_first=True)
"""
>>> packed_seq_batch
PackedSequence(
data=tensor([[ 1, 1],
[10, 10],
[ 2, 2],
[20, 20],
[ 3, 3],
[ 4, 4],
[ 5, 5]]),
batch_sizes=tensor([2, 2, 1, 1, 1]))
"""
Agora, passamos a tupla packed_seq_batch
para os módulos recorrentes no Pytorch, como RNN, LSTM. Isso requer apenas 5 + 2=7
cálculos no módulo recorrente.
lstm = nn.LSTM(input_size=2, hidden_size=3, batch_first=True)
output, (hn, cn) = lstm(packed_seq_batch.float())
"""
>>> output # PackedSequence
PackedSequence(data=tensor(
[[-3.6256e-02, 1.5403e-01, 1.6556e-02],
[-6.3486e-05, 4.0227e-03, 1.2513e-01],
[-5.3134e-02, 1.6058e-01, 2.0192e-01],
[-4.3123e-05, 2.3017e-05, 1.4112e-01],
[-5.9372e-02, 1.0934e-01, 4.1991e-01],
[-6.0768e-02, 7.0689e-02, 5.9374e-01],
[-6.0125e-02, 4.6476e-02, 7.1243e-01]], grad_fn=<CatBackward>), batch_sizes=tensor([2, 2, 1, 1, 1]))
>>>hn
tensor([[[-6.0125e-02, 4.6476e-02, 7.1243e-01],
[-4.3123e-05, 2.3017e-05, 1.4112e-01]]], grad_fn=<StackBackward>),
>>>cn
tensor([[[-1.8826e-01, 5.8109e-02, 1.2209e+00],
[-2.2475e-04, 2.3041e-05, 1.4254e-01]]], grad_fn=<StackBackward>)))
"""
Precisamos converter de output
volta para o lote preenchido de saída:
padded_output, output_lens = torch.nn.utils.rnn.pad_packed_sequence(output, batch_first=True, total_length=5)
"""
>>> padded_output
tensor([[[-3.6256e-02, 1.5403e-01, 1.6556e-02],
[-5.3134e-02, 1.6058e-01, 2.0192e-01],
[-5.9372e-02, 1.0934e-01, 4.1991e-01],
[-6.0768e-02, 7.0689e-02, 5.9374e-01],
[-6.0125e-02, 4.6476e-02, 7.1243e-01]],
[[-6.3486e-05, 4.0227e-03, 1.2513e-01],
[-4.3123e-05, 2.3017e-05, 1.4112e-01],
[ 0.0000e+00, 0.0000e+00, 0.0000e+00],
[ 0.0000e+00, 0.0000e+00, 0.0000e+00],
[ 0.0000e+00, 0.0000e+00, 0.0000e+00]]],
grad_fn=<TransposeBackward0>)
>>> output_lens
tensor([5, 2])
"""
Compare este esforço com a forma padrão
Na forma padrão, só precisamos passar o módulo padded_seq_batch
para lstm
. No entanto, requer 10 cálculos. Envolve vários cálculos mais em elementos de preenchimento que seriam computacionalmente ineficientes.
Observe que isso não leva a representações imprecisas , mas precisa de muito mais lógica para extrair representações corretas.
- Para LSTM (ou quaisquer módulos recorrentes) com apenas direção direta, se quisermos extrair o vetor oculto da última etapa como uma representação para uma sequência, teríamos que pegar vetores ocultos de T (th) etapa, onde T é o comprimento da entrada. Pegar a última representação será incorreto. Observe que T será diferente para diferentes entradas no lote.
- Para LSTM bidirecional (ou quaisquer módulos recorrentes), é ainda mais complicado, pois seria necessário manter dois módulos RNN, um que funciona com preenchimento no início da entrada e outro com preenchimento no final da entrada, e finalmente extraindo e concatenando os vetores ocultos conforme explicado acima.
Vamos ver a diferença:
output, (hn, cn) = lstm(padded_seq_batch.float())
"""
>>> output
tensor([[[-3.6256e-02, 1.5403e-01, 1.6556e-02],
[-5.3134e-02, 1.6058e-01, 2.0192e-01],
[-5.9372e-02, 1.0934e-01, 4.1991e-01],
[-6.0768e-02, 7.0689e-02, 5.9374e-01],
[-6.0125e-02, 4.6476e-02, 7.1243e-01]],
[[-6.3486e-05, 4.0227e-03, 1.2513e-01],
[-4.3123e-05, 2.3017e-05, 1.4112e-01],
[-4.1217e-02, 1.0726e-01, -1.2697e-01],
[-7.7770e-02, 1.5477e-01, -2.2911e-01],
[-9.9957e-02, 1.7440e-01, -2.7972e-01]]],
grad_fn= < TransposeBackward0 >)
>>> hn
tensor([[[-0.0601, 0.0465, 0.7124],
[-0.1000, 0.1744, -0.2797]]], grad_fn= < StackBackward >),
>>> cn
tensor([[[-0.1883, 0.0581, 1.2209],
[-0.2531, 0.3600, -0.4141]]], grad_fn= < StackBackward >))
"""
Os resultados acima mostram que hn
, cn
são diferentes de duas maneiras, enquanto as output
duas maneiras levam a valores diferentes para elementos de preenchimento.