Eu gosto de alguns recursos do D, mas estaria interessado se eles vierem com uma penalidade de tempo de execução?
Para comparar, implementei um programa simples que calcula produtos escalares de muitos vetores curtos, tanto em C ++ quanto em D. O resultado é surpreendente:
- D: 18,9 s [veja abaixo o tempo de execução final]
- C ++: 3,8 s
C ++ é realmente quase cinco vezes mais rápido ou cometi um erro no programa D?
Compilei C ++ com g ++ -O3 (gcc-snapshot 2011-02-19) e D com dmd -O (dmd 2.052) em uma área de trabalho Linux recente moderada. Os resultados são reproduzíveis em várias execuções e os desvios padrão são insignificantes.
Aqui o programa C ++:
#include <iostream>
#include <random>
#include <chrono>
#include <string>
#include <vector>
#include <array>
typedef std::chrono::duration<long, std::ratio<1, 1000>> millisecs;
template <typename _T>
long time_since(std::chrono::time_point<_T>& time) {
long tm = std::chrono::duration_cast<millisecs>( std::chrono::system_clock::now() - time).count();
time = std::chrono::system_clock::now();
return tm;
}
const long N = 20000;
const int size = 10;
typedef int value_type;
typedef long long result_type;
typedef std::vector<value_type> vector_t;
typedef typename vector_t::size_type size_type;
inline value_type scalar_product(const vector_t& x, const vector_t& y) {
value_type res = 0;
size_type siz = x.size();
for (size_type i = 0; i < siz; ++i)
res += x[i] * y[i];
return res;
}
int main() {
auto tm_before = std::chrono::system_clock::now();
// 1. allocate and fill randomly many short vectors
vector_t* xs = new vector_t [N];
for (int i = 0; i < N; ++i) {
xs[i] = vector_t(size);
}
std::cerr << "allocation: " << time_since(tm_before) << " ms" << std::endl;
std::mt19937 rnd_engine;
std::uniform_int_distribution<value_type> runif_gen(-1000, 1000);
for (int i = 0; i < N; ++i)
for (int j = 0; j < size; ++j)
xs[i][j] = runif_gen(rnd_engine);
std::cerr << "random generation: " << time_since(tm_before) << " ms" << std::endl;
// 2. compute all pairwise scalar products:
time_since(tm_before);
result_type avg = 0;
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
avg += scalar_product(xs[i], xs[j]);
avg = avg / N*N;
auto time = time_since(tm_before);
std::cout << "result: " << avg << std::endl;
std::cout << "time: " << time << " ms" << std::endl;
}
E aqui a versão D:
import std.stdio;
import std.datetime;
import std.random;
const long N = 20000;
const int size = 10;
alias int value_type;
alias long result_type;
alias value_type[] vector_t;
alias uint size_type;
value_type scalar_product(const ref vector_t x, const ref vector_t y) {
value_type res = 0;
size_type siz = x.length;
for (size_type i = 0; i < siz; ++i)
res += x[i] * y[i];
return res;
}
int main() {
auto tm_before = Clock.currTime();
// 1. allocate and fill randomly many short vectors
vector_t[] xs;
xs.length = N;
for (int i = 0; i < N; ++i) {
xs[i].length = size;
}
writefln("allocation: %i ", (Clock.currTime() - tm_before));
tm_before = Clock.currTime();
for (int i = 0; i < N; ++i)
for (int j = 0; j < size; ++j)
xs[i][j] = uniform(-1000, 1000);
writefln("random: %i ", (Clock.currTime() - tm_before));
tm_before = Clock.currTime();
// 2. compute all pairwise scalar products:
result_type avg = cast(result_type) 0;
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
avg += scalar_product(xs[i], xs[j]);
avg = avg / N*N;
writefln("result: %d", avg);
auto time = Clock.currTime() - tm_before;
writefln("scalar products: %i ", time);
return 0;
}
avg = avg / N*N
(ordem das operações).