Python 3.4 inclui um novo módulo: tracemalloc
. Ele fornece estatísticas detalhadas sobre qual código está alocando mais memória. Aqui está um exemplo que exibe as três principais linhas que alocam memória.
from collections import Counter
import linecache
import os
import tracemalloc
def display_top(snapshot, key_type='lineno', limit=3):
snapshot = snapshot.filter_traces((
tracemalloc.Filter(False, "<frozen importlib._bootstrap>"),
tracemalloc.Filter(False, "<unknown>"),
))
top_stats = snapshot.statistics(key_type)
print("Top %s lines" % limit)
for index, stat in enumerate(top_stats[:limit], 1):
frame = stat.traceback[0]
# replace "/path/to/module/file.py" with "module/file.py"
filename = os.sep.join(frame.filename.split(os.sep)[-2:])
print("#%s: %s:%s: %.1f KiB"
% (index, filename, frame.lineno, stat.size / 1024))
line = linecache.getline(frame.filename, frame.lineno).strip()
if line:
print(' %s' % line)
other = top_stats[limit:]
if other:
size = sum(stat.size for stat in other)
print("%s other: %.1f KiB" % (len(other), size / 1024))
total = sum(stat.size for stat in top_stats)
print("Total allocated size: %.1f KiB" % (total / 1024))
tracemalloc.start()
counts = Counter()
fname = '/usr/share/dict/american-english'
with open(fname) as words:
words = list(words)
for word in words:
prefix = word[:3]
counts[prefix] += 1
print('Top prefixes:', counts.most_common(3))
snapshot = tracemalloc.take_snapshot()
display_top(snapshot)
E aqui estão os resultados:
Top prefixes: [('con', 1220), ('dis', 1002), ('pro', 809)]
Top 3 lines
#1: scratches/memory_test.py:37: 6527.1 KiB
words = list(words)
#2: scratches/memory_test.py:39: 247.7 KiB
prefix = word[:3]
#3: scratches/memory_test.py:40: 193.0 KiB
counts[prefix] += 1
4 other: 4.3 KiB
Total allocated size: 6972.1 KiB
Quando um vazamento de memória não é um vazamento?
Esse exemplo é ótimo quando a memória ainda está sendo mantida no final do cálculo, mas às vezes você tem um código que aloca muita memória e libera tudo. Tecnicamente, não é um vazamento de memória, mas está usando mais memória do que você imagina. Como você pode rastrear o uso da memória quando tudo é lançado? Se for o seu código, você provavelmente poderá adicionar algum código de depuração para tirar instantâneos enquanto estiver em execução. Caso contrário, você pode iniciar um thread em segundo plano para monitorar o uso da memória enquanto o thread principal é executado.
Aqui está o exemplo anterior, onde todo o código foi movido para a count_prefixes()
função Quando essa função retorna, toda a memória é liberada. Também adicionei algumas sleep()
chamadas para simular um cálculo de longa duração.
from collections import Counter
import linecache
import os
import tracemalloc
from time import sleep
def count_prefixes():
sleep(2) # Start up time.
counts = Counter()
fname = '/usr/share/dict/american-english'
with open(fname) as words:
words = list(words)
for word in words:
prefix = word[:3]
counts[prefix] += 1
sleep(0.0001)
most_common = counts.most_common(3)
sleep(3) # Shut down time.
return most_common
def main():
tracemalloc.start()
most_common = count_prefixes()
print('Top prefixes:', most_common)
snapshot = tracemalloc.take_snapshot()
display_top(snapshot)
def display_top(snapshot, key_type='lineno', limit=3):
snapshot = snapshot.filter_traces((
tracemalloc.Filter(False, "<frozen importlib._bootstrap>"),
tracemalloc.Filter(False, "<unknown>"),
))
top_stats = snapshot.statistics(key_type)
print("Top %s lines" % limit)
for index, stat in enumerate(top_stats[:limit], 1):
frame = stat.traceback[0]
# replace "/path/to/module/file.py" with "module/file.py"
filename = os.sep.join(frame.filename.split(os.sep)[-2:])
print("#%s: %s:%s: %.1f KiB"
% (index, filename, frame.lineno, stat.size / 1024))
line = linecache.getline(frame.filename, frame.lineno).strip()
if line:
print(' %s' % line)
other = top_stats[limit:]
if other:
size = sum(stat.size for stat in other)
print("%s other: %.1f KiB" % (len(other), size / 1024))
total = sum(stat.size for stat in top_stats)
print("Total allocated size: %.1f KiB" % (total / 1024))
main()
Quando executo essa versão, o uso de memória diminuiu de 6 MB para 4KB, porque a função liberou toda a memória ao terminar.
Top prefixes: [('con', 1220), ('dis', 1002), ('pro', 809)]
Top 3 lines
#1: collections/__init__.py:537: 0.7 KiB
self.update(*args, **kwds)
#2: collections/__init__.py:555: 0.6 KiB
return _heapq.nlargest(n, self.items(), key=_itemgetter(1))
#3: python3.6/heapq.py:569: 0.5 KiB
result = [(key(elem), i, elem) for i, elem in zip(range(0, -n, -1), it)]
10 other: 2.2 KiB
Total allocated size: 4.0 KiB
Agora, aqui está uma versão inspirada em outra resposta que inicia um segundo thread para monitorar o uso da memória.
from collections import Counter
import linecache
import os
import tracemalloc
from datetime import datetime
from queue import Queue, Empty
from resource import getrusage, RUSAGE_SELF
from threading import Thread
from time import sleep
def memory_monitor(command_queue: Queue, poll_interval=1):
tracemalloc.start()
old_max = 0
snapshot = None
while True:
try:
command_queue.get(timeout=poll_interval)
if snapshot is not None:
print(datetime.now())
display_top(snapshot)
return
except Empty:
max_rss = getrusage(RUSAGE_SELF).ru_maxrss
if max_rss > old_max:
old_max = max_rss
snapshot = tracemalloc.take_snapshot()
print(datetime.now(), 'max RSS', max_rss)
def count_prefixes():
sleep(2) # Start up time.
counts = Counter()
fname = '/usr/share/dict/american-english'
with open(fname) as words:
words = list(words)
for word in words:
prefix = word[:3]
counts[prefix] += 1
sleep(0.0001)
most_common = counts.most_common(3)
sleep(3) # Shut down time.
return most_common
def main():
queue = Queue()
poll_interval = 0.1
monitor_thread = Thread(target=memory_monitor, args=(queue, poll_interval))
monitor_thread.start()
try:
most_common = count_prefixes()
print('Top prefixes:', most_common)
finally:
queue.put('stop')
monitor_thread.join()
def display_top(snapshot, key_type='lineno', limit=3):
snapshot = snapshot.filter_traces((
tracemalloc.Filter(False, "<frozen importlib._bootstrap>"),
tracemalloc.Filter(False, "<unknown>"),
))
top_stats = snapshot.statistics(key_type)
print("Top %s lines" % limit)
for index, stat in enumerate(top_stats[:limit], 1):
frame = stat.traceback[0]
# replace "/path/to/module/file.py" with "module/file.py"
filename = os.sep.join(frame.filename.split(os.sep)[-2:])
print("#%s: %s:%s: %.1f KiB"
% (index, filename, frame.lineno, stat.size / 1024))
line = linecache.getline(frame.filename, frame.lineno).strip()
if line:
print(' %s' % line)
other = top_stats[limit:]
if other:
size = sum(stat.size for stat in other)
print("%s other: %.1f KiB" % (len(other), size / 1024))
total = sum(stat.size for stat in top_stats)
print("Total allocated size: %.1f KiB" % (total / 1024))
main()
O resource
módulo permite verificar o uso atual da memória e salvar o instantâneo do pico de uso da memória. A fila permite que o thread principal informe ao thread do monitor de memória quando imprimir seu relatório e desligar. Quando executado, mostra a memória que está sendo usada pela list()
chamada:
2018-05-29 10:34:34.441334 max RSS 10188
2018-05-29 10:34:36.475707 max RSS 23588
2018-05-29 10:34:36.616524 max RSS 38104
2018-05-29 10:34:36.772978 max RSS 45924
2018-05-29 10:34:36.929688 max RSS 46824
2018-05-29 10:34:37.087554 max RSS 46852
Top prefixes: [('con', 1220), ('dis', 1002), ('pro', 809)]
2018-05-29 10:34:56.281262
Top 3 lines
#1: scratches/scratch.py:36: 6527.0 KiB
words = list(words)
#2: scratches/scratch.py:38: 16.4 KiB
prefix = word[:3]
#3: scratches/scratch.py:39: 10.1 KiB
counts[prefix] += 1
19 other: 10.8 KiB
Total allocated size: 6564.3 KiB
Se você estiver no Linux, poderá achar /proc/self/statm
mais útil que o resource
módulo.