EDIT Dado que uma variante vazia ( std::variant<>
) está mal formada (de acordo com cppreference ) e que deve ser usada std::variant<std::monostate>
, modifiquei a resposta (adicionei uma tuple2variant()
especialização para tupla vazia) para dar suporte ao caso em que a lista de tipos para V1
ou V2
está vazia.
É um pouco de decltype()
delírio, mas ... se você declarar algumas funções de filtro auxiliar da seguinte maneira
template <bool B, typename T>
constexpr std::enable_if_t<B == std::is_arithmetic_v<T>, std::tuple<T>>
filterArithm ();
template <bool B, typename T>
constexpr std::enable_if_t<B != std::is_arithmetic_v<T>, std::tuple<>>
filterArithm ();
e uma função tupla para variante (com uma especialização para tuplas vazias, para evitar uma vazia std::variant
)
std::variant<std::monostate> tuple2variant (std::tuple<> const &);
template <typename ... Ts>
std::variant<Ts...> tuple2variant (std::tuple<Ts...> const &);
sua classe simplesmente (?) se torna
template <typename ... Ts>
struct TheAnswer<std::variant<Ts...>>
{
using V1 = decltype(tuple2variant(std::declval<
decltype(std::tuple_cat( filterArithm<true, Ts>()... ))>()));
using V2 = decltype(tuple2variant(std::declval<
decltype(std::tuple_cat( filterArithm<false, Ts>()... ))>()));
};
Se você quiser algo mais genérico (se desejar passar std::arithmetic
como parâmetro de modelo), poderá modificar a filterArithm()
função que passa por um parâmetro de filtro de modelo-modelo F
(renomeado filterType()
)
template <template <typename> class F, bool B, typename T>
constexpr std::enable_if_t<B == F<T>::value, std::tuple<T>>
filterType ();
template <template <typename> class F, bool B, typename T>
constexpr std::enable_if_t<B != F<T>::value, std::tuple<>>
filterType ();
A TheAnswer
turma se torna
template <typename, template <typename> class>
struct TheAnswer;
template <typename ... Ts, template <typename> class F>
struct TheAnswer<std::variant<Ts...>, F>
{
using V1 = decltype(tuple2variant(std::declval<decltype(
std::tuple_cat( filterType<F, true, Ts>()... ))>()));
using V2 = decltype(tuple2variant(std::declval<decltype(
std::tuple_cat( filterType<F, false, Ts>()... ))>()));
};
e a TA
declaração tambémstd::is_arithmetic
using TA = TheAnswer<std::variant<bool, char, std::string, int, float,
double, std::vector<int>>,
std::is_arithmetic>;
A seguir, é apresentado um exemplo completo de compilação com std::is_arithmetic
como parâmetro e um V2
caso vazio
#include <tuple>
#include <string>
#include <vector>
#include <variant>
#include <type_traits>
std::variant<std::monostate> tuple2variant (std::tuple<> const &);
template <typename ... Ts>
std::variant<Ts...> tuple2variant (std::tuple<Ts...> const &);
template <template <typename> class F, bool B, typename T>
constexpr std::enable_if_t<B == F<T>::value, std::tuple<T>>
filterType ();
template <template <typename> class F, bool B, typename T>
constexpr std::enable_if_t<B != F<T>::value, std::tuple<>>
filterType ();
template <typename, template <typename> class>
struct TheAnswer;
template <typename ... Ts, template <typename> class F>
struct TheAnswer<std::variant<Ts...>, F>
{
using V1 = decltype(tuple2variant(std::declval<decltype(
std::tuple_cat( filterType<F, true, Ts>()... ))>()));
using V2 = decltype(tuple2variant(std::declval<decltype(
std::tuple_cat( filterType<F, false, Ts>()... ))>()));
};
int main ()
{
using TA = TheAnswer<std::variant<bool, char, std::string, int, float,
double, std::vector<int>>,
std::is_arithmetic>;
using TB = TheAnswer<std::variant<bool, char, int, float, double>,
std::is_arithmetic>;
using VA1 = std::variant<bool, char, int, float, double>;
using VA2 = std::variant<std::string, std::vector<int>>;
using VB1 = VA1;
using VB2 = std::variant<std::monostate>;
static_assert( std::is_same_v<VA1, TA::V1> );
static_assert( std::is_same_v<VA2, TA::V2> );
static_assert( std::is_same_v<VB1, TB::V1> );
static_assert( std::is_same_v<VB2, TB::V2> );
}
Types...
dentrostd::variant
diretamente, como este ?