Gosto da versão do @ mar10 , embora, do meu ponto de vista, exista uma chance de uso indevido (parece que não é o caso se as versões são compatíveis com o documento Semantic Versioning , mas pode ser o caso se algum "número de compilação" for usado ):
versionCompare( '1.09', '1.1'); // returns 1, which is wrong: 1.09 < 1.1
versionCompare('1.702', '1.8'); // returns 1, which is wrong: 1.702 < 1.8
O problema aqui é que os subnúmeros do número da versão são, em alguns casos, escritos com zeros à direita cortados (pelo menos como eu o vi recentemente usando um software diferente), o que é semelhante à parte racional de um número, portanto:
5.17.2054 > 5.17.2
5.17.2 == 5.17.20 == 5.17.200 == ...
5.17.2054 > 5.17.20
5.17.2054 > 5.17.200
5.17.2054 > 5.17.2000
5.17.2054 > 5.17.20000
5.17.2054 < 5.17.20001
5.17.2054 < 5.17.3
5.17.2054 < 5.17.30
O primeiro (ou o primeiro e o segundo) subnúmero da versão, no entanto, sempre é tratado como um valor inteiro ao qual realmente é igual.
Se você usar esse tipo de controle de versão, poderá alterar apenas algumas linhas no exemplo:
// replace this:
p1 = parseInt(v1parts[i], 10);
p2 = parseInt(v2parts[i], 10);
// with this:
p1 = i/* > 0 */ ? parseFloat('0.' + v1parts[i], 10) : parseInt(v1parts[i], 10);
p2 = i/* > 0 */ ? parseFloat('0.' + v2parts[i], 10) : parseInt(v2parts[i], 10);
Assim, cada sub-número exceto o primeiro será comparada como um float, então 09
e 1
vai se tornar 0.09
e 0.1
em conformidade e em comparação corretamente desta forma. 2054
e 3
se tornará 0.2054
e 0.3
.
A versão completa, então, é (créditos para @ mar10 ):
/** Compare two dotted version strings (like '10.2.3').
* @returns {Integer} 0: v1 == v2, -1: v1 < v2, 1: v1 > v2
*/
function versionCompare(v1, v2) {
var v1parts = ("" + v1).split("."),
v2parts = ("" + v2).split("."),
minLength = Math.min(v1parts.length, v2parts.length),
p1, p2, i;
// Compare tuple pair-by-pair.
for(i = 0; i < minLength; i++) {
// Convert to integer if possible, because "8" > "10".
p1 = i/* > 0 */ ? parseFloat('0.' + v1parts[i], 10) : parseInt(v1parts[i], 10);;
p2 = i/* > 0 */ ? parseFloat('0.' + v2parts[i], 10) : parseInt(v2parts[i], 10);
if (isNaN(p1)){ p1 = v1parts[i]; }
if (isNaN(p2)){ p2 = v2parts[i]; }
if (p1 == p2) {
continue;
}else if (p1 > p2) {
return 1;
}else if (p1 < p2) {
return -1;
}
// one operand is NaN
return NaN;
}
// The longer tuple is always considered 'greater'
if (v1parts.length === v2parts.length) {
return 0;
}
return (v1parts.length < v2parts.length) ? -1 : 1;
}
PS: É mais lento, mas também é possível pensar em reutilizar a mesma função de comparação, operando o fato de que a string é realmente a matriz de caracteres:
function cmp_ver(arr1, arr2) {
// fill the tail of the array with smaller length with zeroes, to make both array have the same length
while (min_arr.length < max_arr.length) {
min_arr[min_arr.lentgh] = '0';
}
// compare every element in arr1 with corresponding element from arr2,
// but pass them into the same function, so string '2054' will act as
// ['2','0','5','4'] and string '19', in this case, will become ['1', '9', '0', '0']
for (i: 0 -> max_length) {
var res = cmp_ver(arr1[i], arr2[i]);
if (res !== 0) return res;
}
}